• Title/Summary/Keyword: Discrete Design

Search Result 1,351, Processing Time 0.025 seconds

3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing

  • Zhong Yongmin;Yuan Xiaobu
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2004
  • This paper presents a new approach to create 3D visualization from discrete simulation results. This approach connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer graphics. This approach has been implemented with the software component technology. As an application in virtual manufacturing, visualizations of an electronics assembly factory are also provided in the paper to demonstrate the performance of this new approach.

Modeling and Simulation of Flexible Control Structures for Automated Manufacturing Systems (자동화된 생산 시스템의 유연한 제어 구조의 모델링과 시뮬레이션)

  • Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.439-443
    • /
    • 1987
  • This paper presents a method for constructing model of manufacturing processes for simulation and design of the discrete control logic. The models represent the discrete vent evolution of the system as well as features of the underlying continues processes, for applications such as discrete parts manufacture and assembly, the process is decomposed into operations and for each operation the required resources and associated discrete resource slates are Identified. The structure of the discrete-level control is modeled by modified Perti nets which are synthesized from single resource activity cycles. Construction of nets provides discrete control logic with guaranteed properties based on extended Petri nets theory, for illustration, the proposed method is applied to the high-level discrete control of a two-robotic assembly cell.

  • PDF

Optimum Design of Counterforted Wall Using Mixed Discrete Optimization Method (혼합이산형최적화기법을 이용한 뒷부벽식 옹벽의 최적설계)

  • Lee, Seo-Young;Kim, Jong-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.129-135
    • /
    • 2001
  • The optimum design problems for the design of counterforted wall were formulated and computer programing to solve these problems were developed in this study. Both discrete optimization and continuous optimization method were applied to the design of counterforted wall and the results of these optimization methods were compared each other.

  • PDF

Optimal supervisory control for multiple-modelled discrete event systems

  • Lee, Moon-Sang;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.5-73
    • /
    • 2001
  • In this paper, we present a procedure to design the robust optimal supervisor which has the minimal cost in the sense of average for a given multiple-modelled discrete event system DES. In order to design the robust optimal supervisor, we extend the optimal supervisor design algorithm for a deterministic DES to the case of multiple-modelled DESs. In addition, using the proposed algorithm with modified costs of events and penalities of states, we can show whether a robust supervisor for a given multiple-modelled DES exists and design the minimally restricted robust supervisor.

  • PDF

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 트러스의 형상 및 위상최적실계)

  • Park, Choon Wook;Youh, Baeg Yuh;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.673-681
    • /
    • 2001
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithm. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the design points selected form the genetic process. The evolutionary process evaluates the survivability of the design points. The evolutionary process evaluates the survivability of the design points selected form the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Discrete Optimum Design of Reinforced Concrete Beams using Genetic Algorithm (유전알고리즘을 이용한 철근콘크리트보의 이산최적설계)

  • Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.259-269
    • /
    • 2005
  • This paper describes the application of genetic algorithm for the discrete optimum design of reinforced concrete continuous beams. The objective is to minimize the total cost of reinforced concrete beams including the costs of concrete, form work, main reinforcement and stirrup. The flexural and shear strength, deflection, crack, spacing of reinforcement, concrete cover, upper-lower bounds on main reinforcement, beam width-depth ratio and anchorage for main reinforcement are considered as the constraints. The width and effective depth of beam and steel area are taken as design variables, and those are selected among the discrete design space which is composed with dimensions and steel area being used from in practice. Optimum result obtained from GA is compared with other literature to verify the validity of GA. To show the applicability and efficiency of GA, it is applied to three and five span reinforced concrete beams satisfying with the Korean standard specifications.

Quality Improvement of B-spline Surfaces through Fairing of Data Points (측정점의 순정을 통한 B-스플라인 곡면 품질의 개선)

  • 흥석용;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 2001
  • In reverse engineering, existing products are digitized fur the computer modeling. Using the digitized data, surfaces are modeled for new products. However, in the digitizing process measuring errors or deviations can be happened often in practice. Thus, it is important to adjust such errors or deviations during the computer modeling. To adjust the errors, fairing of the modeled surfaces is performed. In this paper, we present a surface fairing algorithm based on various fairness metrics. Fairness metrics can be discrete. We adopt discrete metrics for fairing given 3D point set. The fairness metrics include discrete principal curvatures. In this paper, automatic fairing process is proposed for fairing given 3D point sets for surfaces. The process uses various fairness criteria so that it is adequate to adopt designers'intents.

  • PDF

A study on the Discrete-Time Adaptive Control for Robot Maninpulator (로보트 매니퓰레이터의 이산 시간 적응제어에 관한 연구)

  • Sung, Kwan-Young;Lee, Un-Cheol;Yoo, Jae-Guen;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.777-780
    • /
    • 1991
  • The practical implementation of model reference adaptive systems(MRAS) using digital computer requires the derivation of discrete-time adaptation laws. This is specially important in the case of direct driver robot and light weight manipulator where inertia changes ang gravity effects are significant. We develope a discrete-time model reference adaptive control scheme for trajectory tracking of robot manipulator. Instead of the conventional Lyapunov approach hyperstabillty theory is more appealing than the Lyapunov approach. It is better suited to discrete time systems and offers more flexibility in design by providing additional free design parameters.

  • PDF

Dynamic Response of a Beam Structure with Discrete Supports Subjected to a Moving Mass (이동질량에 의한 이산지지 보 구조물의 동적응답)

  • Oh, B.J.;Ryu, B.J.;Lee, G.S.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • This paper deals with dynamic response of a beam structure with discrete spring-damper supports under a moving mass. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. The effects of the speed of the moving mass, spring stiffness, damping coefficient, span number of a beam structure, mass ratio of the moving mass on the dynamic response of the beam structure have been studied. Some numerical results provide design engineers for the beam structure design with discrete supports under a moving mass.