• 제목/요약/키워드: Discrete Approximation

검색결과 247건 처리시간 0.023초

웨이브렛을 이용한 선형 시변 시스템의 근사화기법에 관한 연구 (A Study on Approximation Method of Linear-Time-Varying System Using Wavelet)

  • 이영석;김동옥;서보혁
    • 전자공학회논문지T
    • /
    • 제35T권1호
    • /
    • pp.33-39
    • /
    • 1998
  • 본 논문에서는 다해상도 해석이 가능한 웨이브렛 시리즈 기법[4,5]을 이용하여 시변 시스템 임펄스 응답의 근사화를 이룬다. 웨이브렛 시리즈 표현이 행렬 연산의 형태로 표현되고 이러한 행렬 표현 형식은 망의 구성을 가능하게 하며 웨이브렛의 계수가 가중치 행렬로 나타난다. 웨이브렛 계수의 최적값을 구하기 위해 웨이브렛 망을 출력 오차로부터 계수 행렬을 적절한 값으로 수렴시키는 학습 법칙을 온-라인으로 학습하며 이의 결과가 시스템의 결과에 추정함을 보인다.

  • PDF

뉴럴 네트워크를 사용한 시스템 식별 (System Identification Using Neural Networks)

  • 박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.224-226
    • /
    • 1993
  • Multi-layered neural networks offer an exciting alternative for modelling complex non-liner systems. This paper investigates the identification of continuous time nonliner system using neural networks with a single hidden layer. The digital low - pass filter are introduced to avoid direct approximation of system derivatives from sampled data. Using a pre-designed digital low pass filter, an approximated discrete-time estimation model is constructed easily. A continuous approximation liner model is first estimated from sampled input-out signals. Then the modeling error due to the nonlinearity is decreased by a compensator using neural network. Simulation results are given to demonstrate the effective of the proposed method.

  • PDF

Optimum design of steel framed structures including determination of the best position of columns

  • Torkzadeh, P.;Salajegheh, J.;Salajegheh, E.
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.343-359
    • /
    • 2008
  • In the present study, an efficient method for the optimum design of three-dimensional (3D) steel framed structures is proposed. In this method, in addition to choosing the best position of columns based on architectural requirements, the optimum cross-sectional dimensions of elements are determined. The preliminary design variables are considered as the number of columns in structural plan, which are determined by a direct optimization method suitable for discrete variables, without requiring the evaluation of derivatives. After forming the geometry of structure, the main variables of the cross-sectional dimensions are evaluated, which satisfy the design constraints and also achieve the least-weight of the structure. To reduce the number of finite element analyses and the overall computational time, a new third order approximate function is introduced which employs only the diagonal elements of the higher order derivatives matrices. This function produces a high quality approximation and also, a robust optimization process. The main feature of the proposed techniques that the higher order derivatives are established by the first order exact derivatives. Several examples are solved and efficiency of the new approximation method and also, the proposed method for the best position of columns in 3D steel framed structures is discussed.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

DISCRETE MODEL REDUCTION OVER DISC-TYPE ANALYTIC DOMAINS AND $\infty$-NORM ERROR BOUND

  • Oh, Do-Chang;Lee, Kap-Rai;Um, Tae-Ho;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.64-68
    • /
    • 1996
  • In this note, we propose the discrete model reduction method over disc-type analytic domains. We define Hankel singular value over the disc that is mapped by standard bilinear mapping. And GSPA(generalized singular perturbation approximation) and DT(direct truncation) are generalized to GSPA and DT over a disc. Furthermore we show that the reduced order model over a smaller domain has a smaller L$_{\infty}$ norm error bound..

  • PDF

전류 제어형 공진형 컨버터를 위한 대신호 및 소신호 모델 (Large Signal and Small Signal Models for a Pulsewidth-Modulated or Current Controlled Series Resonant Converter)

  • 김윤호;윤병도;상두환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.309-313
    • /
    • 1990
  • Pulse width modulation using discontinuous conduction modes are applied to a full-bridge series resonant converter to regulate the output from no load to full load with low switching loss and a narrow range of frequency variation. Finally, a simple nonlinear discrete-time dynamic model for this proposed converter is derived using approximation. This discrete time model is linearized and a general input - output transfer function for the propelled converter is derived.

  • PDF

기체분자운동론을 이용한 박막 베어링 해석 (Kinetic Theory Analysis for Thin-Film Bearings)

  • 정찬홍
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.162-170
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas slider hearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for the flow field inside stepped and straight slider bearings. The results are compared well with those from the DSMC method. Special attention has been paid to the effect of the pressure build-up in front of a hearing, which has never been assessed before. It has been shown that the pressure build-up at the inlet is about $4.5\%$ of the operating pressure and the resulting load capacity is about $25\%$ higher for the case considered in the present study.

  • PDF

직렬 미소채널 기체유장의 수치해석 (Numerical Analysis of Gas Flows in Microchannels in Series)

  • 정찬홍
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

배터리 팩의 셀간 전압편차를 이용한 이산 웨이블릿 변환(DWT) 기반 SOH 예측방법 (Discrete Wavelet Transform-based SOH Prediction using the Voltage Deviation among the Cells of Li-Ion Battery Pack)

  • 김종훈;김우진;박종호;박정필
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.149-150
    • /
    • 2012
  • 본 논문에서는 배터리 팩을 구성하는 셀간의 전압편차를 이용한 이산 웨이블릿 변환(DWT;discrete wavelet transform) 기반 SOH(State-of-health) 예측방법을 소개한다. 충방전 전압은 DWT의 다해상도 분석(MRA;multi-resolution analysis)을 이용한 시간-주파수 분석을 통해 고주파 전압 성분(detail;$D_n$)과 저주파 전압 성분(approximation;$A_n$)으로 추가 분해되어 SOH 예측을 위한 추가정보를 제공한다. 각 성분의 통계처리(표준편차)를 통해 노화 이전과 이후의 성분값을 비교한다. 즉 프레시 배터리팩과 노화된 팩의 표준편차 기반 셀간 불균형을 서로 비교하여 SOH 예측이 가능하다.

  • PDF

초박막 기체윤활의 수치해석 (Numerical Analysis of Ultra-Thin Gas Film Lubrication)

  • 정찬홍
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.64-70
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in a gas slider bearing. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for a flow in a micro-channel between an inclined slider and a moving disk drive platter The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle-based methods and requires much less computational effort.