• 제목/요약/키워드: Discontinuous precipitates

검색결과 23건 처리시간 0.022초

용탕단조된 Mg-6Al-xZn (x=1.5, 2.5) 합금(合金)의 미세조직 및 기계적 성질에 미치는 시효의 영향 (Effect of Aging Treatment on the Microstructure and Mechanical Properties of Mg-6Al-xZn (x : 1.5, 2.5) Alloys Fabricated by Squeeze Casting)

  • 김순호
    • 열처리공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 1999
  • This study has investigated the effect of aging treatment on the microstructure and mechanical properties of Mg-6Al-xZn(x = 1.5, 2.5) alloys fabricated by the squeeze casting process. The microstructures of as-squeeze cast were composed of pro-eutectic ${\alpha}$, super saturated ${\alpha}$ and ${\beta}(Mg_{17}Al_{12})$ compound. Aged at both $200^{\circ}C$ and $240^{\circ}C$, Mg-6Al-xZn alloys showed the peak hardness due to the formation of ${\beta}(Mg_{17}Al_{12})$ precipitates. The discontinuous precipitates of the lamella type are predominant at $200^{\circ}C$ aging treatment, while the finely dispersed continuous precipitates were dominant at $240^{\circ}C$ aging treatment. Mg-6Al-xZn alloys fabricated by the squeeze casting process had the better combination of tensile strength and elongation compared to the conventionally cast alloys. As zinc contents increased, the tensile strength was increased by the solid solution strengthening effect of zinc.

  • PDF

T6 열처리 및 저온 장시간 등온 시효한 Mg-Al 합금의 경도 및 진동감쇠능 비교 (Comparison of Hardness and Damping Capacities of Mg-Al Alloy Subjected to T6 Heat Treatment and Low Temperature Long Term Isothermal Aging)

  • 전중환
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.277-284
    • /
    • 2023
  • Hardness and damping characteristics of fine discontinuous precipitates (DPs) microstructure generated by low temperature long term isothermal aging were investigated in comparison with those of T6 heat-treated microstructure composed of DPs and continuous precipitates (CPs) in Mg-9%Al alloy. In this study, T6 and fine DPs microstructures were obtained by isothermal aging at 453 K for 24 h and at 413 K for 336 h, respectively, after solution treatment at 693 K for 24 h. The DPs microstructure exhibited higher hardness than the T6 microstructure, which is related to the lower (α + β) interlamellar spacing of the DPs. The DPs microstructure possessed better damping capacity than the T6 microstructure in the strain-amplitude independent region, whereas in the strain-amplitude dependent region, the reverse behavior was observed. The damping tendencies depending on strain-amplitude were discussed based on the microstructural features of the T6 and DPs microstructures.

Mg 합금에서 진동감쇠능의 ${\beta}$상 석출 의존성 (Dependence of Damping Capacity on ${\beta}$ Phase Precipitation in Mg Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제20권6호
    • /
    • pp.306-310
    • /
    • 2007
  • Changes in microstructure and damping capacity with aging time for solutionized Mg-Al alloy have been investigated. Discontinuous ${\beta}\;(Mg_{17}Al_{12})$ precipitates form along the primary grain boundaries, the amount of which increases as the aging time increases. The hardness of the matrix with respect to aging time shows a typical "S" shape, indicating a generation of fine continuous precipitates in the matrix during the aging. The peak level of damping capacity is obtained after 1 hour of aging, over which the damping capacity becomes deteriorated continuously. The formation of optimum density of continuous ${\beta}$ precipitates with fine morphology which would act as pinning points for dislocation lines, might be responsible for the improvement of damping capacity.

Mg-Al 합금에서 등온 시효 중 경도 변화의 미세조직 의존성 (Dependence of Hardness Change on Microstructure during Isothermal Aging in Mg-Al Alloy)

  • 한진구;전중환
    • 열처리공학회지
    • /
    • 제32권6호
    • /
    • pp.249-255
    • /
    • 2019
  • This study is intended to clarify the main microstructural factors that contribute to an increase of hardness during isothermal aging in Mg-Al alloy. For this work, Mg-9.3%Al alloy specimens were solution-treated at 688 K for 24 h followed by water quenching, and then aged at 473 K for up to 24 h. The aging at 473 K yielded nodular discontinuous precipitates (DPs) with (${\alpha}+{\beta}$) lamellar morphology at the grain boundaries, and the volume fraction of DPs increased from 0% to ~30% with increasing aging time up to 12 h. For the aging times longer than 12 h, further formation of DPs was substantially inhibited owing to the occurrence of significant continuous precipitation within the ${\alpha}-(Mg)$ matrix, and the density of continuous precipitates (CPs) becomes greater with increasing aging time. Hardness of the specimen was steadily increased with aging time up to 24 h. Microstructural examination on the aged specimens revealed that the increased overall hardness at the early stage of aging is associated with the increased volume fraction of DPs, but at the later stage of aging, where the amount of DPs was hardly changed, the increased hardness of the ${\alpha}-(Mg)$ matrix in response to the higher density of CPs within the matrix, plays a key role in increasing the overall hardness value.

어닐링한 Cu-Ag 나노복합재 와이어의 미세조직 (Microstructure of Cu-Ag Filamentary Nanocomposite Wires Annealed at Different Temperatures)

  • 곽호연;홍순익;이갑호
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.995-1000
    • /
    • 2011
  • The microstructure of Cu-24 wt.%Ag filamentary nanocomposite fabricated by a thermo-mechanical process has been investigated by transmission electron microscopy (TEM) observations. This study is focused on the stability of Ag filaments formed by cold drawing; the effects of thermal treatment on the precipitation behavior and distribution of Ag-rich precipitates were also investigated. The Ag filaments elongated along the <111> orientation were observed in Cu-rich ${\alpha}$ phase of the as-drawn specimen and the copper matrix and the silver filament have a cube on cube orientation relationship. Annealing at temperatures lower than $200^{\circ}C$ for the as-drawn specimen caused insignificant change of the fibrous morphology but squiggly interfaces or local breaking of the elongated Ag filaments were easily observed with annealing at $300^{\circ}C$. When samples were annealed at $400^{\circ}C$, discontinuous precipitation was observed in supersaturated Cu solid solution. Ag precipitates with a thickness of 7-20 nm were observed along the <112> direction and the orientation relationship between the copper matrix and the Ag precipitates maintained the same orientation relationship in the as-drawn specimen. The interface between the copper matrix and the Ag precipitates is parallel to {111} and micro-twins were observed in the Ag precipitates.

분말야금법으로 제조된 Cu-7.5Ni-5Sn 합금의 열처리 조건에 따른 기계적 특성의 변화 (Tensile Properties of Powder Metallurgy Processed PM Cu-7.5Ni-5Sn Alloy with Different Heat Treatment Conditions)

  • 류재철;김상식;한승전;김창주
    • 한국재료학회지
    • /
    • 제9권9호
    • /
    • pp.905-912
    • /
    • 1999
  • 분말야금법으로 제조된 Cu-7.5Ni-5Sn 합금의 용체화 및 시효 열처리 조건에 따른 기계적 특성의 변화를 관찰하였다. As-received 상태의 Cu-7.5Ni-5Sn 합금을 시효한 경우에는 시효 20분 후에 ${\gamma}$\\` 상의 석출에 의한 강도 증가를 나타내는데 반해, 재용체화 처리된 시편에서는 시효 수십초부터 스피노달 분해에 의한 급격한 강도의 증가를 나타내고 있다. 그러나 전체적인 인장강도는 재용체화 처리를 행한 경우에 비해 as-received 상태에서 등온 시효한 경우가 더욱 우수한 것으로 나타났다. 이러한 현상은 재용체화 처리에 의한 결정립 성장에 기인한 것으로 사료된다. As-received 상태의 Cu-7.5Ni-5Sn 합금을 장시간 시효하게 되면 결정립계에 불연속 석출물이 생성되었으며, 이러한 불연속 석출물의 생성과 성장은 열처리 조건에 영향을 받는 것으로 관찰되었으며, 합금의 최종 기계적 성질에 크게 영향을 미치는 것으로 판단된다.

  • PDF

Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성 (Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향 (Effect of Micro-Alloying Elements and Transformation Temperature on the Correlation of Microstructure and Tensile Properties of Low-Carbon Steels with Ferrite-Pearlite Microstructure)

  • 이상인;이지민;황병철
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.184-191
    • /
    • 2017
  • This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.

AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성 (Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy)

  • 김현지;배준호;김영민;박성혁
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

냉간프레스금형용 고성능 주강 개발 (Development of a Cast Tool Steel with Excellent Performance for Application to Cold-Work Press Dies)

  • 강전연;;김병환;김호영
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.290-299
    • /
    • 2018
  • The microstructure of a newly developed alloy tool steel (KV1) for casting cold-work press dies was analyzed using advanced scanning electron microscopy. Its mechanical properties and durability in use as piercing inserts were tested. It contained a continuous network structure which originated from the micro-segregation during solidification and was composed of retained austenite and primary carbides. However, after quenching and tempering, its continuity was destroyed due to the decomposition of austenite. The discontinuous spatial distribution and the smaller amount of primary carbide in the network presented KV1 enhanced ductility compared to the common alloy (HK700). The reduced C and Cr, the addition of V resulted in a small amount of primary carbides which primarily consisted of MC, as well as fine and uniform dispersion of precipitates. Owing to these features, KV1 exhibited delayed initiation of chipping when used for piercing inserts.