• Title/Summary/Keyword: Discontinuous model

Search Result 295, Processing Time 0.026 seconds

Crack Coalescence in Rock Bridges under Uniaxial Compression (단축압축 하의 암석 브릿지에서의 균열 결합)

  • Park, Nam-Su;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.23-32
    • /
    • 2001
  • Rock masses are usually discontinuous in nature, as a result of various geological processes they have underdone and they contain rock joints and bridges. Crack propagation and coalescence processes mainly cause rock failures in tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. During uniaxial compression, wing crack initiation stress, wing crack propagation angle, and crack coalescence stress of Diastone gypsum and Yeosan Marble specimens were examined. And crack initiation, propagation, and coalescence processes were observed. Shear, tensile and mixed (shear+tensile) types of crack coalescence occurred. To compare the experimental results with Ashby & Hallam model, crack coalescence stress was normalized and it generally agreed with the experimental results.

  • PDF

Effect of Hydrophilic-Lipophilic Balance of Drugs on Their Release Behavior from Amphiphilic Matrix

  • Yoo, Young-Tai;Shin, Hyun-Woo;Nam, Byung-Guk
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.283-290
    • /
    • 2003
  • Organic drugs including aspirin, omeprazole, and naproxen with three different levels of octanol/water partition coefficient were examined for their release behavior from the amphiphilic PCL-b-PEO-b-PCL (PCEC) matrix. Scanning electron micrograph (SEM) of PCEC illustrated a well defined two-phase morphology consisted of dispersed poly(ethylene oxide) (PEO) domain and continuous polycaprolactone (PCL) phase. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) experiments veri tied that three model drugs are dissolved as a molecular dispersion in PCEC matrix. The release of hydrophilic aspirin closely followed the water absorption profile of the matrix indicating that its major fraction is present in PEO domain. However, substantial amount of aspirin present in less hydrophilic region displayed discontinuous biphasic release pattern. In the case of omeprazole with intermediate hydrophobicity consistent release behavior was observed for a period of 24 hrs after the rapid liberation of ca. 10% of the drug presumably partitioned in PEO phase. It was ascribed to the fact that the progressive hydration of PCEC matrix gradually increased the chance of drug/water exposure to compensate the exhaustion of device. Naproxen with the highest octanol/water distribution coefficient among three model drugs exhibited a limited release of 35% for 24 hrs. Finally, hydroxypropyl methylcellulose phthalate (HPMCP)/PCEC blend matrix demonstrated an accelerated and quantitative release of hydrophobic naproxen by generating high porosity and thereby expanding polymer/water interface.

Analytical approaches to the charging process of stratified thermal storage tanks with variable inlet temperature (변온유입 성층축열조의 충전과정에 대한 해석적 접근)

  • Yoo, Hoseon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 1997
  • This paper presents an approximate analytical solution to a two-region one-dimensional model for the charging process of stratified thermal storage tanks with variable inlet temperature in the presence of momentum-induced mixing. Based on the superposition principle, an arbitrary-varying inlet temperature is decomposed into inherent discontinuous steps and continuous intervals approximated as a finite number of piecewise linear functions. This approximation allows the temperature of the upper perfectly-mixed layer to be expressed in terms of constant, linear and exponential functions with respect to time. Applying the Laplace transform technique to the model equation for the lower thermocline layer subject to each of three representative interfacial conditions yields compact-form solutions, a linear combination of which constitutes the final temperature profile. A systematic method for deriving solutions to the plug-flow problem having polynomial-type boundary conditions is also established. The effect of adiabatic exit boundary on solution behaviors proves to be negligible under the actual working conditions, which justifies the assumption of semi-infinite domain introduced in the solution procedure. Finally, the approximate solution is validated by comparing it with an exact solution obtained for a specific variation of inlet temperature. Excellent agreements between them suffice to show the necessity and utility of this work.

  • PDF

Analytical Study on the fatigue Behavior of Reinforced Concrete Bridge Piers under Earthquake (지진시 철근콘크리트 교각의 피로거동에 관한 해석적 연구)

  • 김태훈;이상철;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.389-396
    • /
    • 2001
  • This paper presents an analytical prediction of the fatigue behavior of reinforced concrete bridge piers under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for fatigue behavior of reinforced concrete bridge piers under earthquake will be verified by comparison with reliable experimental results.

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Design of Active Power Factor Corrector for Low Power Supply by Loss Free Resistor Concept (무손실 저항개념을 이용한 저전력 전원설비용 능동 역률보정기의 설계)

  • 임영철;정영국;최찬학;나석환;이건식;장영학
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.1
    • /
    • pp.30-36
    • /
    • 1993
  • A simple discontinuous conduction mode(DCM) flyback type active power factor corrector for low power supply resents an effective resistive load to its power input. It is therefore well suited as an inexpensive high power factor rectifier for office equipment. An equivalent circuit model for the Active Power Factor Corrector based on the "Loss Free Resistor" concept is presented. This simple model correctly describes the basic power processing properties of the Active Power Factor Corrector, including input port resistor emulation, output port power some characteristics.teristics.

  • PDF

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

Numerical Simulation of Tunnel Blasting (수치모형에 의한 터널발파 시뮬레이션에 관한 연구)

  • 박정주;박의섭
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.344-351
    • /
    • 2001
  • In the tunnelling by blasting, the calculations of charge weight and the estimations of blasting effect have been simply carried out by empirical formulas. Also, it has been rare to consider the impact energy of blasting in numerical analyses. Thus in this study a numerical modeling technique of blasting load is developed and used with the 2 dimensional distinct element method(DEM) to consider the nonlinear behaviour of discontinuous underground structures. TD examine and verify its applicability of the numerical model to actual problems, a blasting of tunnel under an embankment is numerically analysed with DEM. It is examined that the behavior of circumference structures, the displacements of above- and under-ground structures, and the propagation of particle velocities can be known by this numerical analysis. As a result, the blasting load model, proposed by this study, can be applied to actual problems. This model applied with DEM can be used in the examination of structural stability.

  • PDF