• Title/Summary/Keyword: Discontinuity layer

Search Result 56, Processing Time 0.025 seconds

Phosphate vs. Silicate Discontinuity Layer Developed at Mid-Depth in the East Sea (동해 중층에 발달하는 인산염 대 규산염 비의 불연속층)

  • Kim, Bong-Guk;Lee, Tong-Sup;Kim, Il-Nam
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.331-336
    • /
    • 2010
  • The CREAMS (Circulation Research of the East Asian Marginal Sea) survey in 1999 revealed a sharp mid-depth discontinuity of the phosphate:silicate ratio in all basins of the East/Japan Sea. Incidentally, this discontinuity layer corresponds to the oxygen minimum layer. Directly below the discontinuity layer, oxygen concentration is increased. This increase in oxygen concentration is interpreted as a proof of intermediate water formation. Oxygen minimum indicates that the water parcel is old and stable against mixing. So it seems be an efficient barrier to vertical exchange of materials. This means that, once materials enter the lower domain, they rarely return to the upper domain. Therefore, the biogeochemistry of the East/Japan Sea depends heavily on material input through the Korea Strait, and flux is expected to be sensitive to the climate change. As a result, the East/Japan Sea ecosystem seems vulnerable to tipping (regime shift), which occurred on a decadal time scale.

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

A Study on the Boundary Layer Thickness at a Liquid-Vapor Interface (기액계면의 경계층 두께에 관한 연구)

  • Choi, Soon-Ho;Song, Chi-Sung;Choi, Hyun-Kyu;Lee, Jung-Hye;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1086-1091
    • /
    • 2004
  • The boundary layer is a very important characteristic of a liquid-vapor interface since it governs the heat and mass transfer phenomena across an interface. However, the thickness of a boundary layer is generally micro- or nano-sized, which requires highly accurate measurement devices and, consequently, costs the related experiments very high and time-consuming. Due to these size dependent limitations, the experiments related with a nano-scaled size have suffered from the errors and the reliability of the obtained data. This study is performed to grasp the characteristics of a liquid-vapor interface, by using a molecular dynamics method. The simulation results were compared with other studies if possible. Although other studies reported that there existed a temperature discontinuity over an interface when the system was reduced to micro- or nano-sized, we confirmed that there was no such a temperature discontinuity.

  • PDF

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

A Study on the Analysis of the Slope Stability Considering Clay Filling in Discontinuity (불연속면내 점토충전물을 고려한 사면 안정해석 연구)

  • Min, Kyong-Nam;Ahn, Tae-Bong;Yang, Seung-Jun;Baek, Seon-Gi;Lee, Tae-Sun
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.175-185
    • /
    • 2007
  • When filling material such as clay is included along the discontinuity, it may cause instability on a slope even if the direction of discontinuity works in a positive way. In the study area, slope sliding occurred at the boundary between a clay filling material and weathered soil because the physical properties differ across the boundary; and this is very similar to the situation where foliation in a rock works as a weak zone during a structural behavior, causing an inter-layer slip. In most analysis, if there exists a clay filling material, a single discontinuity is assumed to perform analysis. In those cases, the discontinuity is modeled as a slip surface within clay. Therefore, the characteristics of the boundary are not considered in the analysis, so that ultimately the physical property of clay usually prevails. The result of evaluating the slope stability affected by clay filling material shows the significant difference in the safety level due to the strength parameter depending on the failure type of the discontinuity by a filling material.

A Study on the Phenomena at a Liquid-Vapor Interface by the Molecular Dynamics Method (분자동역학법을 이용한 기액계면현상에 관한 연구)

  • Choi, Hyun-Kue;Song, Chi-Sung;Kim, Hye-Min;Lee, Jung-Hye;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.159-168
    • /
    • 2005
  • In recent studies, it was reported that there existed the temperature discontinuity at a liquid-vapor interface in an equilibrium state. However, from the viewpoint of the classical thermodynamics, it is highly questionable result although considering that the experiments related with a boundary layer is very difficult due to the extremely thin thickness of it. To clarify whether the temperature discontinuity over a liquid-vapor interface really exists, the computer simulations were performed. From the simulation results, it could be concluded that the misconception in a temperature calculation might result in non-uniform temperature distributions over an interface under an equilibrium state.

Earthquake Response Analysis considering Irregular Soil Layers (불규칙한 다층 물성을 가지는 지반의 지진 응답 해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.67-73
    • /
    • 2005
  • Precise analysis of soil-structure interaction requires a proper description of soil profile. However, such approach becomes generally nearly unpractical for soil exhibiting material discontinuity and complex geometry since meshes should match that material discontinuity line. To overcome these difficulties, a different numerical integration method is adopted in this paper, which enables to integrate easily over an element with material discontinuity without regenerating mesh fellowing the discontinuity line. As a result the mesh is highly structured, loading to very regular silliness matrix. The influence of the shape of soil profile on the response is examined and it is seen that the proposed soil-structure analysis method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

An Integral Equation for Kinked Cracks in Finite Plane Bodies (유한영역에서의 꺾인균열 해석을 위한 적분방정식 적용 연구)

  • 서욱환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2138-2144
    • /
    • 1993
  • An integral equation representation of cracks was presented which differs from well-known "dislocation layer" representation. In this new representation, the equations are written in terms of the displacement discontinuity across the crack surfaces rather than derivatives of the displacement-discontinuity. It was shown in that the new technique is well-suited to the treatment of kinked cracks. In the present paper, this integral equation representation is coupled to the direct boundary-element method for the treatment of finite bodies containing kinked cracks. The method is demonstrated for two-dimensional finite domains but extension to three-dimensional problems would appear to be possible. The resulting approach is shown to be simple, yet very accurate. accurate.