• Title/Summary/Keyword: Discontinuities

Search Result 634, Processing Time 0.022 seconds

Direction Analysis of Surface Sliding at ${\bigcirc}{\bigcirc}$ District in the Samcheok Coalfield, Korea (삼척탄전 내 ${\bigcirc}{\bigcirc}$지역에서 발생한 지반 거동의 방향 분석)

  • Lee, Byung-Joo
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • The purpose of this study is to analyze the direction of slope sliding that occurred at the highland ${\bigcirc}{\bigcirc}$ district in the Samcheok coalfield, using geological and structural detail surveys. The study area is dominated by the Paleozoic Pyong-an Group, and sliding is concentrated in zones of alternating sandstone and shale beds in the Geumcheon and Jangsung Formations. Discontinuities in the area have a strike of NE-SW and dip at 30~$80^{\circ}$ to the NW and 40~$80^{\circ}$ to the SE. However, some have strikes of NW-SE. In slide area group 1 (P1 to P4), en echelon tension gashes were caused by shearing. The surface in the areas of group 2 (P5 to P7) and group 3 (P8 and P9) is marked by step-type tension cracks that formed due to extension. This phenomenon caused anticlockwise rotation of the sliding slope. Otherwise, the cutting of the road side through the eastern slope of the mountain contributed to surface sliding due to geographical equilibrium loss.

Comparative Study of Square-Inventory Method with Scanline Survey in Slope Stability Analysis (사면 안정 분석을 위한 정면적법과 선조사법의 비교연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.119-129
    • /
    • 2009
  • In relation to slope stability analysis, geologic characteristics and engineering properties of the discontinuities in three slopes selected are compared and analyzed by both square-inventory method and scanline survey. The aim of the study is in evaluating which method is applied better in slope stability analysis by comparing results of the two methods with those of direct observation on outcrop of slope failures generated. In each slope, results of comparative analysis among geologic and engineering properties are analyzed similarly one another. However, results of orientation analysis in slope 2 are different each other, which indicates orientation of joints in slope 2 depends on persistency and frequency of each joint and also indicates appearance of new joint set with different orientation. Probability density distribution and spacing in slope 3 are high in comparison to those in slope 2 and 3. The reasons are that distribution of psammitic rocks and development of minor folds in slope 3 unlike slope 2 and 3 are closely associated with development of joints. The research data indicate that the square-inventory method predicts more precise failure aspects and is more effective way than scanline survey in analyzing slope stability of the study area.

A Case Study of Road Upheaval caused by Slope Movement, and Verification of Reinforcement using Real-Time Monitoring (암반비탈면 활동에 의한 도로 융기현상 사례 연구 및 실시간 모니터링을 이용한 대책공법 검증)

  • Lee, Jong-Hyun;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The movement of rock cut slopes may result in upheaval of an adjacent road. Because most cut slopes consist of rock, road upheaval due to the movement of a cut slope is a rare phenomenon in Korea. We found that the movement of rock slopes which are heavily weathered and with strongly developed weak zones is governed by circular failure of the overall rock formation rather than by failure along discontinuities. The results of a numerical analysis revealed that the application of a ubiquitous joint model in a continuum analysis is appropriate for anisotropic rocks (e.g., schist) and for slopes for which the stability is influenced by a particular discontinuity. The results of a field investigation and numerical analyses suggest that retaining walls and anchors should be used to stabilize rock slopes and that real-time monitoring equipment should be installed to assess the reinforcing effect of the remedial measures.

Seismic reflection imaging of a Warm Core Ring south of Hokkaido (훗카이도 남부 Warm Core Ring의 탄성파 반사법 영상화)

  • Yamashita, Mikiya;Yokota, Kanako;Fukao, Yoshio;Kodaira, Shuichi;Miura, Seiichi;Katsumata, Katsuro
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • A multi-channel seismic reflection (MCS) survey was conducted in 2009 to explore the deep crustal structure of the Pacific Plate south of Hokkaido. The survey line happened to traverse a 250-km-wide Warm Core Ring (WCR), a current eddy that had been generated by the Kuroshio Extension. We attempted to use these MCS data to delineate the WCR fine structure. The survey line consists of two profiles: one with a shot interval of 200m and the other with a shot interval of 50 m. Records from the denser shot point line show much higher background noise than the records from the sparser shot point line. We identified the origin of this noise as acoustic reverberations between the sea surface, seafloor and subsurface discontinuities, from previous shots. Results showed that a prestack migration technique could enhance the signal buried in this background noise efficiently, if the sound speed information acquired from concurrent temperature measurements is available. The WCR is acoustically an assemblage of concave reflectors dipping inward, with steeper slopes (${\sim}2^{\circ}$) on th ocean side and gentler slopes (${\sim}1^{\circ}$) on the coastal side. Within the WCR, we recognised a 30-km-wide lens-shaped structure with reflectors on the perimeter.

A Modeling Study on the AVO and Complex Trace Analyses of the Fracture Bone Reflection (파쇄대 반사에너지의 AVO 및 복소트레이스 분석에 관한 모형연구)

  • Han Soo-Hyung;Kim Ji-Soo;Ha Hee-Sang;Min Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • AVO and complex trace analyses mainly used to characterize natural gas reservoir were tested in this paper for a possible application to detection of major geological discontinuities such as fracture zones. The test data used in this study were calculated by utilizing a viscoelastic numerical program which was based on the generalized Maxwell body for a horizontal fracture model. In AVO analysis of a horizontal fracture zone, p-wave reflection appears to be variant depending upon the acoustic-impedence contrast and the offset distance. The fracture zone is also effectively clarified both in gradient stack and range-limited stack in which fracture zone reflection is attenuated with the increasing offset distance. In complex attribute plots (instantaneous amplitude, frequency, and phase), the top and bottom of the fracture Tone are characterized by a zone of strong amplitudes and an event of the same phase. Low frequency characteristics appear at the fracture zone and the underneath. Amplitude attenuation and waveform dispersion are dependent on Q-contrast between the fracture zone and the surrounding media. They were properly compensated by optimum inverse Q-filtering.

  • PDF

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

Analysis of Slope Stability and Property of Discontinuities Using Square-Inventory Method: The Changri area, Boeun-Gun, Chungbuk (정면적법을 이용한 불연속면의 특성화 및 사면안정해석: 충북 보은군 내북면 창리 지역)

  • Choi, Byoung-Ryol;Cheong, Sang-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2008
  • The study shows a method called a square-inventory method, which is a better and faster method than scanline survey and window method for an analysis of slope stability. The study area is located in the Changri area, Boeun-Gun, Chungbuk, and consists of many formations of the Okcheon Supergroup. Various types of failure are observed from the phyllite including the rocks in the study area. The physical properties of meta-sedimentary rocks are that minerals of the rocks are composed of microcrystalline quartz and sericite, which are arranged parallel to bedding (or schistosity) and crenulation cleavage. Therefore, such properties affect geotechnical ones of the rock. The slope stability are analyzed by selecting 3 areas, each of which are divided into 2 or 3 slopes of $1m{\times}1m$ area that represent each of 3 investigation sites. The possibility of wedge and toppling failure is very high in all 3 areas by using square-inventory method. Although possibility of plane failure is weak in the investigation site 2, the plane failures are frequently found from the slope of site 2. The bedding (or schistosity) plane and cleavage, another types of discontinuity coexist in meta-sedimentary rocks uulike igneous rocks, and therefore are important factors to be considered together with joint structures in th ε analysis of slope stability.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Importance and Application of Ichnology (생흔학의 중요성 및 활용)

  • Kim, Jong-Kwan;Chun, Seung-Soo;Baek, Young-Sook;Chang, Eun-Kyong;Shin, Sun-Ja
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Ichnology is the study of traces made by various organisms, which includes classification and description of traces, and interpretation of sedimentary process, behavior of organism and depositional environment based on traces and organism behavior. Ichnofacies, which is defined as the association of several traces related together with substrate characteristics and sedimentary processes, is closely related to depositional environment. Ichnology has been applied to sedimentology (to understand physical characteristics of depositional environment, sedimentation pattern and event bed), sequence stratigraphy (to recognize sequence boundaries and biostratigraphic discontinuities such as MFS, TSE and RSE), oil exploration (providing of many information without big cost) and palaeocology. Preliminary ichnological study on the Ganghwa intertidal flat shows that dominant ichofacies are changing with season and location, suggesting that their seasonal variation would be a good indicator to understand the seasonal change of sedimentary processes, the small- scale change of sedimentary environment and the preservation potential of such units. Ichnology on intertidal flat in western coast of Korea has a great potential to apply its results to petroleum geology as well as sedimentology.

  • PDF

Behavior Interpretation and Secondary Degradation of the Standing Sculptured Buddha at the Yongamsa Temple, Ogcheon, Korea (옥천 용암사 마애불의 거동특성 해석과 이차적 훼손)

  • Lee, Chan Hee;Chung, Youn Sam;Kim, Ji Young;Yi, Jeong Eun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.83-94
    • /
    • 2005
  • Host rock or the standing sculptured Buddha in the Yongamsa temple is macular porphyritic biotite granite, which has gone through mechanical and chemical weathering. The rock around the Buddha statue is busily scattered with steep inclinations that are almost vertically discontinuous planes with the strikes of $N8^{\circ}E$. Especially the development of the joints that cross the major joints causes the structural instability of the rock. The rock of the Buddha statue is separated into several rock blocks because of many different discontinuity. Thus it is estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the differential pressure is imposed on the body of the Buddha in the host rock, it is urgent to give a reinforce treatment of geotechnical engineering for the safe of its structural stability. Very contact area of joints have turned into soil, which promotes the growth of weeds and plant roots, then aggravates the mechanical weathering of the rock. Thus conservational treatments should also be considered to get rid of secondary contaminants and vegetation along the discontinuities and to prevent further damages.

  • PDF