• Title/Summary/Keyword: Discharging capacity

Search Result 145, Processing Time 0.021 seconds

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.

Synthesis and Characteristics of LiCoO2 Powders Prepared by SHS Process (자전연소합성법을 이용한 리튬이차전지용 양극활물질 LiCoO2의 제조 및 특성)

  • ;;;Hayk H. Nersisyan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.388-394
    • /
    • 2004
  • LiCoO$_2$ as the cathode activity material for lithium secondary battery was prepared from a homogeneously mixed powder of LiNO$_3$/Co by SHS process under argon gas. The characteristics of powder including electrochemical properties were investigated according to various reaction conditions. The reaction temperature/velocity and the size of LiCoO$_2$ were controlled by Li/Co molar ratio and a cooling rate of the specimen, respectively. The maximum discharge capacity was 145 mAh/g on 1.05 Li/Co molar ratio and the relatively stable cycling characteristic with 6.4% of capacity fading was obtained after 10th charging-discharging test.

Modeling of Lithium Battery Cells for Plug-In Hybrid Vehicles

  • Shin, Dong-Hyun;Jeong, Jin-Beom;Kim, Tae-Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • Online simulations are utilized to reduce time and cost in the development and performance optimization of plug-in hybrid electric vehicle (PHEV) and electric vehicles (EV) systems. One of the most important factors in an online simulation is the accuracy of the model. In particular, a model of a battery should accurately reflect the properties of an actual battery. However, precise dynamic modeling of high-capacity battery systems, which significantly affects the performance of a PHEV, is difficult because of its nonlinear electrochemical characteristics. In this study, a dynamic model of a high-capacity battery cell for a PHEV is developed through the extraction of the equivalent impedance parameters using electrochemical impedance spectroscopy (EIS). Based on the extracted parameters, a battery cell model is implemented using MATLAB/Simulink, and charging/discharging profiles are executed for comparative verification. Based on the obtained results, the model is optimized for a high-capacity battery cell for a PHEV. The simulation results show good agreement with the experimental results, thereby validating the developed model and verifying its accuracy.

A Practical Research for More Efficient Utilization of Water Resources in the South-Western Part of Korea (서남부지역 수자원의 효율적 이용방안)

  • 김현영;서영제;최용선;문종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.279-286
    • /
    • 1998
  • The south-western part of Korea is situated in an unbalance of water supply and demand relating to the Keum, Mankyung, Dongjin and Youngsan River and their estuary reservoirs. For example, the Keum River estuary reservoir is discharging the larger amount of yearly runoff into the sea due to the small storage capacity, while Saemankeum estuary reservoir which is under construction, has the smaller runoff amount comparing with its storage capacity, And the downstream area of the Youngsan River, such as Youngkwang, Youngam are deficient in water due in larger demand and smaller supply. In order to solve the above unbalanced water supply and demand and also to improve the water use efficiency, the Hierarchical Operation Model for Multi-reservoir System(HOMMS) has been developed and applied to analyze the multi-reservoir operation assuming that the above reservoirs were linked each other. The result of this study shows that 2,148MCM of annual additional water requirement for agricultural and rural water demands are required in this region at 2011 of target year, and these demands can be resolved by diverting and reusing 1,913MCM of the released water from the estuary reservoirs into the sea.

  • PDF

Development of National Life Cycle Inventory Database on Irrigation Water by Agricultural Dam (관개용 저수지 농업용수의 국가 전과정 목록분석 데이터베이스 구축)

  • Kim, Young-Deuk;Park, Pil-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • The objective of the study is to develop life cycle inventory (LCI) database of dam, a major facility for irrigation water supply. The types of database developed are three out of nine dams according to the size of the wate r storage capacity: two kinds larger than 500,000 $m^3$ depending on gate for discharging (Type 1) and the other dam smaller than 500,000 $m^3$ (Type 2). According to the LCI analysis, type 1 larger than 500,000 $m^3$ storage capacity with gate has the lowest environment impact in the 6 impact categories. The impact of the type 1 accounts for 7~35 % of the type 2 for supplying irrigation water. Comparing with the environment impacts of water for other uses such as drinking and industrial water, the impacts of 1 $m^3$ irrigation water supply is 4~45 % of the one for industrial water supply and 1~16 % of the drinking water's. The three types of LCI DB on the irrigation water by dams will be useful in the application of Life Cycle Assessment in agricultural products and environmental labelling including carbon footprint since it is complied to the guidelines of LCI DB constr uction issued by Ministry of Environment and Ministry of Knowledge Economy.

A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed (駕莫灣 流域의 汚染負荷 特性에 관한 硏究)

  • 이대인;조현서
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Experience for Development and Capacity Certification of Safety Relief Valves (안전방출밸브 개발과 용량인증 사례)

  • Kim, Chil-Sung;Roh, Hee-Seon;Kim, Kang-Tae;Kim, Ji-Heon;Kim, Jong-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.16-25
    • /
    • 2005
  • The purpose of this study is localization of safety relief valves for Nuclear Service. The safety relief valve is the important equipment used to protect the pressure vessel, the steam generator and the other pressure facility from overpressure by discharging the operating medium when the pressure of system is reaching the design pressure of the system. We developed design technology used FEM ' CFM about safety relief valve for Nuclear Service according to ASME (or KEPIC) Code and KHNP's Technical Specification. To prove validity of a design technology, actually, we manufactured and inspected and tested the sample products designed according to a developed technology. The capacity qualification test was achieved according to requirement of ASME(or KEPIC) Code by NBBI and the functional qualification test was achieved according to ASME QME-1 for operating condition in technical specification of KHNP by NLI. Therefore we have to achieve the development of safety relief valves for Nuclear Service with our own technologies.

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Cell-balancing Algorithm for Paralleled Battery Cells using State-of-Charge Comparison Rule

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.156-158
    • /
    • 2018
  • The inconsistencies between paralleled battery cells are becoming more considerable issue in high capacity battery applications like electric vehicles. Due to differences in state-of-charge (SOC) and internal resistance within individual cells in parallel, charging or discharging current is not appropriately balanced to each cell in terms of SOC, which may shorten the lifetime or sometimes cause safety issues. In this paper, an intelligent cell-balancing algorithm is proposed to overcome the inconsistency issue especially for paralleled battery cells. In this scheme, SOC information collected in the sub-BMS module is sent to the main-BMS module, where the number of parallel cells to be connected to DC bus is continuously updated based on the suggested SOC comparison rule. To verify the method, operation of the algorithm on 4 paralleled battery cells are simulated on Matlab/Simulink. The simulation result shows that the SOCs of paralleled cells are evenly redistributed. It is expected that the proposed algorithm provides high reliable and prolong the life cycle and working capacity of the battery pack.

  • PDF

Fabrication and charaterization of $RuO_2$based thin film supercapacitor ($RuO_2$박막을 이용한 박막 슈퍼캐패시터의 제작 및 분석)

  • 임재홍;최두진;전은정;남성철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.920-923
    • /
    • 2000
  • All solid-state thin film supercapacitor(TFSC) based on $RuO_2$ electrode was fabricated. Ruthenium oxide$(RuO_2)$ thin film was deposited on Pt/Ti/Si subsrate by d.c. magnetron sputtering. LiPON(lithium phosphorus oxynitride) thin film were deposited by r.f. reactive sputtering. X-ray diffraction patterns of $RuO_2$ and LiPON films revealed that crystal structures of both films were amorphous. To decrease resistivity of $RuO_2$ thin film, $RuO_2$ thin film was deposited with $H_2O$ vapor. In order to decide the maximum ionic conductivity, the LiPON films were prepared by various sputtering condition. The maximum ionic conductivity was $9.5\times{10}^7S/cm$. A charge-discharge measurements showed the capacity of $3\times{10-2}\;F/cm^2-\mu{m}$ for the as-fabricated TFSC. The discharging efficiency was decreased after 500 cycles by 40 %.

  • PDF