• 제목/요약/키워드: Discharge machining

검색결과 324건 처리시간 0.04초

ED-Drilling의 방전가공 특성 (Machining Characteristics of ED-Drilling)

  • 김창호;허관도;예상돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.827-830
    • /
    • 2000
  • This paper describes the machining characteristics of the sintered carbide and die steel by electric discharge drilling with various tubular electrodes. Electrical discharge machining(EDM) removes material from the workpiece by a series of electrical sparks that cause localized temperatures high enough to melt or vaporise the metal in the vicinity of the charge. In the experiment, four types of electrode which have different diameter are used with the application of continuous direct current and axial electrode feed. The controlled factors include the dimension of the electrode. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole.

  • PDF

마이크로 방전가공에서 Round Trip Method를 이용한 전극마모 보정 (Tool Electrode Wear Compensation using Round Trip Method for Machining Cavities in Micro EDM Process)

  • 박성준;김영태;민병권;이상조
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.42-49
    • /
    • 2004
  • Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal process. The recent trend in reducing the size of product has given micro EDM a significant amount of research attention. Micro EDM is capable of machining not only micro holes and micro shafts as small as a few micrometers in diameter but also complex three dimensional micro cavities. But, longitudinal tool wear by electrical discharge is indispensable and this affects the machining accuracy in micro EDM process. Therefore, newly developed tool wear compensation strategy called round trip method is suggested and verified by experiment. In this method, machining depth of cut, overlap effect and critical travel length are also considered.

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

Micro-EDM 공정을 이용한 미세 형상 가공 (Machining of Micro-scale Shapes using Micro-EDM Process)

  • 김영태;박성준;이상조
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.

가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발 (Development of Ultrasonic Machine with Force Controlled Position Servo System)

  • 장인배;이승범;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

일체주조법, 레이저용접법, 납착법, 방전가공법에 의해 제작된 임플란트 보철물의 적합도에 관한 연구 (FIT OF IMPLANT FRAMEWORKS FABRICATED BY ONE-PIECE CASTING, LASER WELDING, SOLDERING, AND ELECTRIC DISCHARGE MACHINING)

  • 설영훈;정창모;전영찬;강성원
    • 대한치과보철학회지
    • /
    • 제40권2호
    • /
    • pp.156-171
    • /
    • 2002
  • The purpose of this study was to measure and compare the strains produced by screw-tightening implant frameworks fabricated by aye different fabrication methods; (1) one-piece cast using plastic sleeve, (2) one-piece cast using gold cylinder, (3) laser welding, (4) soldering, and (5) electrical discharge machining, and also to measure and compare the strains produced when the order of screw tightening was changed A research model incorporating eighteen strain gages was made to measure the fit of implant frameworks in three dimensions. Three implants aligned in an arc were fixed on the top ends of the L-shape aluminum bars of the research model, and standard abutments were joined to the implants with abutment screws. Five types of implant framework were placed on the abutments and screwed by a torque wrench using 10 Ncm. Under the conditions of this study, the following conclusions were drawn: 1. The electrical discharge machining group showed the smallest magnitude of strain, followed by the soldering group, the laser welding group, the one-piece cast group using gold cylinder, and the one-piece cast group using plastic sleeve. However, among the magnitude of strain for the remaining groups except the electrical discharge machining group, there were not significant differences. 2. When the order of screw tightening was changed, there were not significant differences in the magnitude of strain. 3. In comparison with the electrical discharge machining group, the laser welding group and the one-piece cast groups showed greater horizontal distortion and the soldering group showed greater horizontal and vertical distortion.

다구찌 실험계획법을 이용한 와이어 방전가공의 최적 가공조건 선정 (Optimum selection of machining parameters of Wire Electrical Discharge Machining using Taguchi method)

  • 임세환;김주현;이위로;박주승
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.123-128
    • /
    • 2002
  • The machining parameters for the wire electrical discharge machining(WEDM), including no load voltage, pulse-on time, pulse-off time, wire tension, water flow rata offset etc. should be chosen properly so that a better performance can be obtained An optimum selection of machining parameters relies heavily on the operators technologies and experience. This study presents a method by means of Taguchi method to select optimal machining parameter combination for an cutting speed or surface roughness. Experimental results demonstrate that the machining models are appropriate and the derived machining parameters satisfy the real requirements in notice.

  • PDF

레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공 (Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining)

  • 김산하;정도관;김보현;오광환;정성호;주종남
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

전극의 재료와 크기가 방전가공량에 미치는 영향 (Influence on Metal Removal Rate by Material and Size Difference of the Electrode)

  • 김희중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.809-815
    • /
    • 1998
  • This study has been performed to investigate MRR(metal removal rate) surface roughness with various pulse-on duration using the copper and graphite electrode according to the electrode size on the heat treated STD 11 which is extensively used for metallic molding steel in the EDM. The results obtained are as follow ;a)MRR increases a lot when pulse-on duration is 100 $\mu{s}$ or less but MRR has little difference with pulse-on duration of 100 $\mu{s}$ or more b) According to the increase of Pulse-on duration the large the electrode size the more MRR c) Safe discharge is needed to make maximum of MRR and the metallic organization must be complicated for discharge induction. d) Actual machining time is longer than theoretical machining time at the short pulse-on duration because of skin effect of current. e) Graphite electrode needs the larger electric discharge energy than copper electrode to remove remained chips completely.

  • PDF

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.