• Title/Summary/Keyword: Disasters Prevention System

Search Result 243, Processing Time 0.023 seconds

Structural Capacity Evaluation of System Scaffolding using X-Type Advanced Guardrail (교차가새형 선행 안전난간을 적용한 시스템비계의 구조 성능 평가)

  • Park, J.D.;Lee, H.S.;Shin, W.S.;Kwon, Y.J.;Park, S.E.;Yang, S.S.;Jung, K.
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.49-58
    • /
    • 2020
  • In domestic construction sites, when installing steel pipe scaffolding and system scaffolding, the guardrails are installed after the installation of the work platforms. This conventional guardrail system (CGS) is always exposed to the risk of falls because the safety railing is installed later. In order to prevent fall disasters during erecting and dismantling scaffolds, it is necessary to introduce the advanced guardrail system (AGS) which installs railings in advance of climbing onto a work platform. For the introduction of the AGS, the structural performance of the system scaffolding applying the CGS and the AGS was compared and evaluated. The structural analysis of the system scaffold (height: 31 m and width: 27.4 m) with AGS confirmed that structural safety was ensured because the maximum stress of each element of the system scaffolding satisfies the allowable stress of each element. As a result of performance comparison of CGS and AGS for each element, the combined stress ratio of vertical posts in AGS was 6.4% lower than that of CGS. In addition, in the case of ledger and transom, the combined stress ratios of AGS and CGS were almost the same. The compression test of the assembled system scaffolding (three-storied, 1 bay) showed that the AGS had better performance than the CGS by 9.7% (8.91 kN). The cross bracing exceeds the limit on slenderness ratio of codes for structural steel design. But the safety factor for the compressive load of the cross bracing was evaluated as meeting the design criteria by securing 3 or more. In actual experiments, it was confirmed that brace buckling did not occur even though the overall scaffold was buckled. Therefore, in the case of temporary structures, it was proposed to revise the standards for limiting on slenderness ratio of secondary or auxiliary elements to recommendations. This study can be used as basic data for the introduction of AGS for installing guardrails in advance at domestic construction sites.

Application Method of Remote Site Monitoring in Public Road Construction Projects (공공 도로건설사업에서의 원격 현장모니터링 적용방안에 관한 연구)

  • Ok, Hyun;Kim, Seong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6550-6557
    • /
    • 2013
  • The public road construction projects awarded by the regional construction and management office, which is an affiliate of the Ministry of Land, Infrastructure and Transport, are managed by construction supervision officers. These officials frequently visit a large number of construction sites to conduct inspections and supervision tasks. Therefore, the site management efficiency is essential in terms of the time and money spent in travelling to the sites. The introduction of a site monitoring management system is considered necessary to minimize the number of site visits and enable remote monitoring of the construction progress to enhance the business efficiency of the construction supervision officers. In this study, a remote site monitoring system was constructed using web cameras for public road construction works. The trial applications were implemented by selecting ten constructions sites. The effectiveness of the system was analyzed to assess its applicability. In an assessment of the applicability of the verification results, remote site monitoring showed cost savings of approximately 35% compared to the existing site management. The guidelines for applying the site monitoring management system were provided, the introduction plan was investigated, and the improvement method was presented. The results showed that the system is likely to minimize the unnecessary site visits, remove the risk factors at vulnerable areas in the sites beforehand, and prevent a range of disasters and accidents. In addition, the quality of the infrastructures is likely to improve through the prevention of accidents and the elimination of substandard and faulty construction work.

Determining the Flash Flood Warning Trigger Rainfall using GIS (GIS를 활용한 돌발홍수 기준우량 결정)

  • Hwang, Chang-Sup;Jun, Kye-Won;Yeon, In-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.78-88
    • /
    • 2006
  • This paper is to apply Geographical Information System (GIS) supported Geomorphoclimatic Instantaneous Unit Hydrograph (GCIUH) approach for the calculated flash flood trigger rainfall of the mountainous area. GIS techniques was applied in geography data construction such as average slope, drainage area, channel characteristics. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. We compared the GCIUH peak discharge with the existing report using the design storm at Chundong basin($14.58km^2$). The results showed that derived the GCIUH was a very proper method in the calculation of mountaunous discharge. At the Chundong basin, flash flood trigger rainfall was 12.57mm in the first 20 minutes when the threshold discharge was $11.42m^3/sec$.

  • PDF

Analysis of Position Accuracy for Underground Facility Using RTK-GPS (RTK-GPS를 이용한 지하시설물의 위치 정확도 분석)

  • 박운용;이종출;정성모
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2003
  • The complicated facilities on the ground have begun to be laid under the ground as increasing emphasis on the beauty of cities due to centralization. But, as the kind of the facilities have been concentrated on the narrow area, accidents occur due to the difficulty of maintenance and the inaccuracy of location information. In this study, first we constructed the field test model to compare with the method of underground probing. So, we could know that the electromagnetic induction method and GPR(Ground Penetration Radar) are useful. It was acquired the position information for the underground facilities using a RTK-GPS. As the result, we have analyzed the accurate position of the underground facility and show the way improving accuracy in detecting and surveying comparing with the traditional surveying method. Also, we hope to contribute the effective maintenance and prevention of disasters to the underground facility as using underground facilities 3D position with Arcview and building the DB of exact depth and underground facilities information system.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

Development of M2M-based Underground Space (subway) Disaster Response Network and EL Display Integrated Board (M2M기반 지하공간(지하철) 재난대응 네트워크 및 EL 디스플레이 통합 보드 개발)

  • Park, Miyun;Kwon, Segon;Park, EunChurn;Lee, Jeonhun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.422-441
    • /
    • 2017
  • Notifying emergency evacuation methods, accurate disaster location and evacuation route guidance can be very active alternatives to quickly minimize evacuation and casualties in disaster situation in the development of subway disaster prevention detection system that detects the disaster signs at the subway station early on the basis of Internet of things and leads passengers to evacuate. It's not easy to ensure perfect functioning of fire fighting facilities and equipments due to underground space structure with narrow exits. Therefore, we developed disaster provision EL Display integrated board that can induce the most efficient evacuation and the field experiment was conducted to examine the practical application in this study. Especially the applicability was verified by field application test because there is no case in which EL panels are used to evacuate disasters.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

A Study on Establishment of the Optimum Mountain Meteorological Observation Network System for Forest Fire Prevention (산불 방지를 위한 산악기상관측시스템 구축방안)

  • Lee, Si-Young;Chung, Il-Ung;Kim, Sang-Kook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • In this study, we constructed a forest fire danger map in the Yeongdong area of Gangwon-do and Northeastern area of Gyeongsangbuk-do using a forest fire rating model and geographical information system (GIS). We investigated the appropriate positions of the automatic weather station (AWS) and a comprehensive network solution (a system including measurement, communication and data processing) for the establishment of an optimum mountain meteorological observation network system (MMONS). Also, we suggested a possible plan for combining the MMONS with unmanned monitoring camera systems and wireless relay towers operated by local governments and the Korea Forest Service for prevention of forest fire.

Development of a USN-Based Monitoring Scenario for Slope Failures (USN 기반의 사면붕괴 모니터링 시나리오 개발)

  • Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.122-130
    • /
    • 2010
  • Seventy percent of Korea's national territory is covered with mountains, and the land is frequently exposed to typhoons and localized torrential downpours, particularly in July through September. For this reason, slope failure is one of the most frequent types of natural disasters in Korea. To prevent the damage caused by slope failure, the Korean government, academia and industry have strived together to develop and install a wired system for monitoring slope failures. However, conventional wired monitoring systems have been reported to have limitations, such as possible system errors caused by lightning, and the difficulties of restoration and management of the systems. To solve these problems, this research suggests a USN-based monitoring system for slope failures. First, the trend of slope measurement and USN technology was analyzed, and then the current status of damage caused by slope failures in Korea was reviewed. Next, a USN-based monitoring scenario for slope failures, incorporating both USN and slope monitoring technique, was developed. Finally, sensors were decided based on the developed scenario. It is expected that the results of this study will be utilized as fundamental data for the development of monitoring prototype systems for slope failures in the future. The development of the USN-based monitoring system for slope failures and its application in the field will also ultimately contribute to the prevention of slope failures and the minimization of related damage.

A Study on Role Assignment between the Ministries of Government for the Research and Development on Disaster Prevention (방재 연구개발 분야의 정부 부처간 역할 조정에 관한 연구)

  • Park, Jung-Han;Choi, Gyu-Hyun;Kim, Young-Soo;Jung, Seong-Hoon;Lee, Sang-Houck;Lee, Pyeong-Koo;Lee, Woan-Kyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.359-372
    • /
    • 2008
  • A number of researches on disaster risk reduction using the most advanced equipments and scientific technologies have been performed to minimize the damage of property and to protect human life. Although the Korean government is trying to enlarge the research area for disaster risk reduction, the investment size and the applicable results in this area have stayed in the lower level comparing to other scientific fields in Korea and the same field in advanced countries. However, the National Emergency Management Agency (NEMA), a government Agency which is responsible for disaster management coordination, was established in June 2004 establishing an efficient and well-organized system to cope with various disasters. In this study, investment size by the government was evaluated and associated areas were also identified. We also analyzed the roles on research and development for disaster risk reduction among different government Ministries were analyzed and role assignment to each Ministry was proposed. The role assignment has been concreted by conducting the process of approval in the government.