• Title/Summary/Keyword: Disaster Prevention Performance

Search Result 339, Processing Time 0.026 seconds

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

A Study on the Disaster Prevention Plan to minimize the School Damage in the Earthquake Disaster (학교 지진피해 최소화를 위한 방재대책 개선에 관한 연구)

  • Lee, Byoungho;Cho, Woncheol
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • School is a place to be done the education of Disaster Prevention and to be established the function of Disaster Prevention and seismic performance to secure the safety of children as well as emergency evacuation facilities for local communities in case of disaster. To improve the ability of Earthquake Disaster Prevention for students and teachers schools have to put the Earthquake Disaster Prevention on the subjects, for an example ethics, social study, science and gym and make a plan to efficiently manage school disaster prevention facilities. Seismic retrofitting on school facilities have to be established with the method of construction for steel bracings and seismic shear walls choosing old architectures first which is not the design with the seismic performance considering educational environmental aspects, and reconstruction of old architectures to get the agreement of societies. Furthermore, there is great demand for the effective, efficient and systematic improvement of school facilities for the use of shelters to be disaster prevention facilities.

  • PDF

Review for Assessment Methodology of Disaster Prevention Performance using Scientometric Analysis (계량정보 분석을 활용한 방재성능평가 방법에 대한 고찰)

  • Dong Hyun Kim;Hyung Ju Yoo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.39-46
    • /
    • 2022
  • The rainfall characteristics such as heavy rains are changing differently from the past, and uncertainties are also greatly increasing due to climate change. In addition, urban development and population concentration are aggravating flood damage. Since the causes of urban inundation are generally complex, it is very important to establish an appropriate flood prevention plan. Thus, the government in Korea is establishing standards for disaster prevention performance for each local government. Since the concept of the disaster prevention performance target was first presented in 2010, the setting standards have changed several times, but the overall technology, methodology, and procedures have been maintained. Therefore, in this study, studies and technologies related to urban disaster prevention performance were reviewed using the scientometric analysis method to review them. This analysis is a method of identifying trends in the field and deriving new knowledge and information based on data such as papers and literature. In this study, papers related to the disaster prevention performance of the Web of Science for the last 30 years from 1990 to 2021 were collected. Citespace, scientometric software, was used to identify authors, research institutes, countries, and research trends, including citation analysis. As a result of the analysis, consideration factors such as the the concept of asset evaluation were identified when making decisions related to urban disaster prevention performance. In the future, it is expected that prevention performance standards and procedures can be upgraded if the keywords are specified and the review of each technology is conducted.

The Impact of the Government's Earthquake Disaster Response Capabilities and the Legal and Institutional Appropriateness of the Disaster Management System on the Operational Performance of Disaster Management : Focused on Fire Officer's Consciousness (정부의 지진재난 대응역량과 재난관리체계의 법·제도적 적절성이 재난관리 운영성과에 미치는 영향 : 소방공무원의 인식을 중심으로)

  • Youn, SeokMin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.318-330
    • /
    • 2020
  • Purpose: In this study, the effect of the government's disaster response capabilities and the legal and institutional appropriateness of the disaster management system on the operational performance of disaster management performance were verified. Method: Questionnaire survey was performed for the fire officials, and the surveyed data was statistically analyzed by using SPSS 25.0 program. Result: The main results of this study are as follows. First, the government's earthquake disaster response capability is found to have a significant effect on disaster follow-up management as well as disaster prevention preparation, which is a factor in disaster management performance. Second, it has been shown that the legal and institutional appropriateness of the earthquake disaster management system has a significant impact on disaster follow-up management as well as disaster prevention preparation, which is a factor of disaster management performance. Conclusion: The important policy implications for improving the operation performance of disaster management could be obtained in preparation for earthquakes in Korea.

Estimation of Disaster Prevention Target Rainfall according to Urban Disaster Prevention Performance (도시방재성능에 따른 방재성능목표 강우량 산정 연구)

  • Jeong, Min-Su;Oak, Young-Suk;Lee, Young-Kune;Lee, Young-Sub;Park, Mi-Ri;Lee, Chul-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.101-110
    • /
    • 2017
  • The National Emergency Management Agency (NEMA) presented the disaster prevention performance target rainfall (DPPTR) for disaster prevention. The estimation criteria for DPPTR is a 10 year cycle. On the other hand, the target rainfall recalculated every 10 years is difficult to reflect the current change in rainfall on climate change. In this study, the probability of precipitation using the recent rainfall data was prepared and the weights according to socio-economic criteria reflecting the urban characteristics and adjusted probability rainfall criteria were applied to the results. The difference between the existing target rainfall and recalculated result was compared. The input data for the estimated probability rainfall was selected from 6 points located in the rainfall observing station of Chungcheongnam-do, Daejeon region. As a result of the estimation, in the case of upward probability precipitation weight, some similar areas were observed. On the other hand, there were a few cases of upward or downward changes within 10 mm. Considering the rainfall variability and uncertainty due to climate change, the existing target rainfall does not present the condition properly. Therefore, hydrological designers need to calculate the target rainfall, reflecting the present condition.

Concept design of Multi-Drone Ground Control System for Forest Disaster Prevention (산림 방재용 다중 드론 지상통제장치 개념 설계)

  • Kim, Gyou-Beom;Oh, Ju-Youn
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.273-277
    • /
    • 2018
  • In the field of forest disaster prevention, drones are expected to save higher human resources than the existing manpower has, and produce high-efficiency results over time. However, operational limitations brought by short flight times have brought the environment of limited use of the various capabilities of the drone, and the existing development systems operating the multi-drone are mainly for performance purpose, so it is a difficult to use for forest disaster prevention. The purpose of this paper is to design the concept based on multi-drone operation procedure through analysis of mission of ground control system for forest disaster prevention.

Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation (국내 성능위주설계의 시행현황 분석 - 화재시나리오 및 시뮬레이션을 중심으로)

  • An, Sung-Ho;Mun, Sun-Yeo;Ryu, Ill-Hyun;Choi, Jun-Ho;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.32-40
    • /
    • 2017
  • The current status of Performance-Based Design (PBD) implemented in 4 wide areas (Seoul, Gyeonggi, Incheon and Busan) over the past 5 years was reviewed with regard to the number of PBD implementation and target buildings. Then, detailed status related to fire scenarios, input information for fire simulation, and grid size were analyzed with the pre-review for the PBD. As a result, the domestic PBD was mainly applied to the mixed occupancy. In the fire simulations performed on the identical fire scenario and fire space, the maximum heat release rate (HRR) varied significantly depending on the PBD designer. Various combustibles were also considered for the identical fire source, and their combustion properties also showed considerable uncertainty. In addition, the applicability of accurate input information for predictive models of heat and smoke detectors was examined. Finally, the average grid size for the fire simulation using Fire Dynamics Simulator (FDS) was analyzed, and the improvement of PBD to minimize designer dependency was proposed.

Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Liu, Xuesheng;Hu, Shanchao;Gu, Qingheng
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.