• Title/Summary/Keyword: Disaster Monitoring

Search Result 663, Processing Time 0.03 seconds

A Study on the Construction of an Urban Disaster Prevention System based on WSN/GIS

  • Lee, Jeong-Eun;Shin, Seong-Hyun;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1671-1678
    • /
    • 2007
  • In these days, Disaster Management Systems have still put emphasis on its recovery more than the prevention of disaster events. However, the countermeasure of restoration has limitations to prevent the caused loss because the disasters often happen and are massive. Therefore, we propose a disaster prevention system for supporting the safe urban. In this paper, we try to construct a real-time monitoring system to prevent disaster events using new technologies such as Wireless Sensor Networks (WSN) and Geographic Information System (GIS). As a prototype to simulate the fire disasters on real-time, we construct gas sensors and temperature sensors. Our system consists of a WSN system to collect data of the gas and temperature sensors and to monitor the situation information. Our contribution is to provide a prototype application to prevent the disasters from the fire by constructing a WSN system with gas and temperature sensors.

  • PDF

Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study

  • Wang, Jun;Ning, Jianguo;Qiu, Pengqi;Yang, Shang;Shang, Hefu
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.375-383
    • /
    • 2019
  • In underground retreating longwall coal mining, hard roof collapse is one of the most challenging safety problems for mined-out areas. Identifying precursors for hard roof collapse is of great importance for the development of warning systems related to collapse geohazards and ground control. In this case study, the Xinhe mine was chosen because it is a standard mine and the minable coal seam usually lies beneath hard strata. Real-time monitoring of hard roof collapse was performed in longwall face 5301 of the Xinhe mine using support resistance and microseismic (MS) monitoring; five hard roof collapse cases were identified. To reveal the characteristics of MS activity during hard roof collapse development and to identify its precursors, the change in MS parameters, such as MS event rate, energy release, bursting strain energy, b value and the relationships with hard roof collapse, were studied. This research indicates that some MS parameters showed irregularity before hard roof collapse. For the Xinhe coalmine, a substantial decrease in b value and a rapid increase in MS event rate were reliable hard roof collapse precursors. It is suggested that the b value has the highest predictive sensitivity, and the MS event rate has the second highest.

Open-Source Hardware Module Application for Remote Monitoring of Disaster Prevention (재난관리 원격 모니터링용 오픈소스 하드웨어 모듈 응용)

  • Jin, Kyung-Chan;Lee, Eun-Ju;Lee, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.299-305
    • /
    • 2015
  • Since the natural disasters such as floods, droughts, heat wave and cold wave are increasing, the need for risk management is necessary to minimize the damage with utilizing IT technology. Also, the monitoring services of disaster response type have been developed and applied. Recently, the open source hardware based on the signal of the sensor, or the monitoring studies have been carried. In this paper, by analyzing a low-cost open source hardware platform such as Beagle board, we examine the utilization of the hardware-based module for sensor monitoring.

SVC: Secure VANET-Assisted Remote Healthcare Monitoring System in Disaster Area

  • Liu, Xuefeng;Quan, Hanyu;Zhang, Yuqing;Zhao, Qianqian;Liu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1229-1248
    • /
    • 2016
  • With the feature of convenience and low cost, remote healthcare monitoring (RHM) has been extensively used in modern disease management to improve the quality of life. Due to the privacy of health data, it is of great importance to implement RHM based on a secure and dependable network. However, the network connectivity of existing RHM systems is unreliable in disaster area because of the unforeseeable damage to the communication infrastructure. To design a secure RHM system in disaster area, this paper presents a Secure VANET-Assisted Remote Healthcare Monitoring System (SVC) by utilizing the unique "store-carry-forward" transmission mode of vehicular ad hoc network (VANET). To improve the network performance, the VANET in SVC is designed to be a two-level network consisting of two kinds of vehicles. Specially, an innovative two-level key management model by mixing certificate-based cryptography and ID-based cryptography is customized to manage the trust of vehicles. In addition, the strong privacy of the health information including context privacy is taken into account in our scheme by combining searchable public-key encryption and broadcast techniques. Finally, comprehensive security and performance analysis demonstrate the scheme is secure and efficient.

Dangerous Area Prediction Technique for Preventing Disaster based on Outside Sensor Network (실외 센서네트워크 기반 재해방지 시스템을 위한 위험지역 예측기법)

  • Jung, Young-Jin;Kim, Hak-Cheol;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.775-788
    • /
    • 2006
  • Many disaster monitoring systems are constantly studied to prevent disasters such as environmental pollution, the breaking of a tunnel and a building, flooding, storm earthquake according to the progress of wireless telecommunication, the miniaturization of terminal devices, and the spread of sensor network. A disaster monitoring system can extract information of a remote place, process sensor data with rules to recognize disaster situation, and provide work for preventing disaster. However existing monitoring systems are not enough to predict and prevent disaster, because they can only process current sensor data through utilizing simple aggregation function and operators. In this paper, we design and implement a disaster prevention system to predict near future dangerous area through using outside sensor network and spatial Information. The provided prediction technique considers the change of spatial information over time with current sensor data, and indicates the place that could be dangerous in near future. The system can recognize which place would be dangerous and prepare the disaster prevention. Therefore, damage of disaster and cost of recovery would be reduced. The provided disaster prevention system and prediction technique could be applied to various disaster prevention systems and be utilized for preventing disaster and reducing damages.

Development of an USN Based Integrated Open Server System for Disaster Prevention Management (USN 기반 개방형 방재관리 통합시스템 개발)

  • Lee, Jeong-Kyoon;Lee, Ki-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.929-932
    • /
    • 2007
  • The integrated prevention of disaster management system is collected prevention of disaster data from prevention of disaster relation other systems and smart sensor in USN. This system manages fire fighting facility effectively. The relation equipment which is used in existing and network using "Open Protocols" about under using the support system which is integrated effectively as the destroyer. It connects CCTV, the sensitivity environmental sensor, automatic fire detection equipment and security equipment and air flow equipment system using Internet. The System Server was collected monitoring data at the each equipment and processing by operational scenario. It will verified the effectiveness of operational scenario and integrated prevention of disaster management system

  • PDF

Estimation of Vulnerable Disaster Areas to Establish Busan U-City Model (부산시 U-City 모델 구축을 위한 재해취약지 분석)

  • Jeon, Sang-Soo;Jang, Hyun-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.65-73
    • /
    • 2008
  • Since the damages caused by disasters increase every year associated with wrenching climatic changes and the diversification of the social structure, the efficient management system is required to reduce damages and an assessment of the vulnerable disaster areas is necessary to prevent and mitigate the damages. In this paper, we have estimated the vulnerable disaster areas based on the records of the past damage histories and performed the risk assessment of the social infrastructures in Busan city to provide the fundamental information for the real-time monitoring system and the systematic approach for disaster prevention system to build V-City model. These results are illustrated by using Geographical Information System (GIS) and the order of vulnerable disaster areas are also estimated.

Marine Environment Monitoring and Analysis System Model (해양환경 모니터링 및 분석 시스템의 모델)

  • Park, Sun;Kim, Chul Won;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2113-2120
    • /
    • 2012
  • The study of automatic monitoring and analysis of marine environment in Korea is not enough. Recently, the marine monitoring technology is actively being studied since the sea is a rich repository of natural resources that is taken notice in the world. In particular, the marine environment data should be collected continuously in order to understand and analyze the marine environment, however the marine environment monitoring is limited in many area yet. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. In this paper, we proposed the marine environment monitoring and analysis system model. The proposed system automatically collects the marine environment information for monitoring the marine environment intelligently. Also it predicts the marine disaster by analyzing the collected ocean data.

Remote Sensing-assisted Disaster Monitoring and Risk Analysis (원격탐사를 활용한 연속적 재난상황 인지 및 위험 모니터링 기술)

  • Im, Jungho;Sohn, Hong-Gyoo;Kim, Duk-jin;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1007-1011
    • /
    • 2020
  • Recently, natural and anthropogenic disasters have rapidly increased due to the on-going climate change and various human activities. Remote sensing (RS) technology enables the continuous monitoring and rapid detection of disastrous events thanks to its advantages covering vast areas at high temporal resolution. Moreover, RS technology has been very actively used in disaster monitoring and assessment since cluster- and micro-satellites and drones were introduced and became popular. In this special issue, nine papers were introduced, including the processing and applications of remote sensing data for monitoring, assessment, and prediction of various natural disasters. These papers are expected to serve as useful references for disaster management in the future.

Construction and Monitoring of Test bed in Urban Sediment Disaster Prevention Technology (도심지 토사재해 방어기술 테스트베드 구축 및 모니터링 연구)

  • Lee, Jung-min;Kim, Hyo-Jin;Lee, Yoon-Sang;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • In this study, sediment transfer and precipitation analysis of the test bed watershed was conducted through the model for the application and practical use of the urban sediment disaster prevention technology, and used this as an aid to design to secure reliability. In addition, conducted the test bed monitoring with the defense technology, analyzed the effect, and established the maintenance plan. Analyzed the change of soil deposition volume through arbitrary slope adjustment for the currently installed stormwater conduit of the test bed watershed. As a result, it is important to reduce the total sedimentation amount in the adjustment of the slope of the entire pipeline, but it is important that the sedimentation depth of each sediment does not rise to such a degree as to threaten the performance of the pipeline. Considering these matters, it is necessary to design the pipeline to prevent the clogging of the soil from the viewpoint of the reliability of the entire pipeline. The sediment disaster defense technology test bed is divided into a new city and an old city, and old city test bed is under construction. The result obtained through the monitoring of the test bed in the new city, sediment disasters such as debris can delay the time to reach the downtown area, and it is possible to secure the golden time, such as evacuation and rescue through the warning system. Also, the maintenance of the test bed application was suggested. Continuous and systematic monitoring is required for securing the reliability of element technology and successful commercialization.