• Title/Summary/Keyword: Disaster Events

Search Result 270, Processing Time 0.024 seconds

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.

Visual Signal Luminance Analysis and Light Source Color Application Study for Escape Guidance in Underground Common Duct (지하공동구 내 탈출 유도를 위한 비주얼 시그널 휘도 분석 및 광색 적용 연구)

  • Jongmin Lim;Hyojoo Kong;Jinsoo Shin;Sangwuk Shin;Seongsik Yoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.806-816
    • /
    • 2022
  • Purpose: In this study, the luminance measurement analysis results of the smoke generation state are considered for visual signal display light color for real-time escape guidance in the underground common area. Method: We will analyze the scattering characteristics of light in the atmosphere and optical technology based on the visibility theory, and try to classify the elemental technology as a guidance function through a prototype of a visual signal display device for evacuation guidance. Result: In the experiment conducted under the smoke-generating condition, the results were derived with low luminance ratio and good visibility in the order of red, green, and yellow. However, this result is different from general lighting in which color rendering is considered, and is limited to signals for signals and detection. Conclusion: A conclusions were drawn by reflecting both the luminance measurement results in the smoke generation situation and the preference survey results conducted in previous studies for the light color of the visual signal for signal and detection. When events such as smoke occur, it is better to use the escape guidance visual signal in red or green.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Spatial Analysis to Capture Person Environment Interactions through Spatio-Temporally Extended Topology (시공간적으로 확장된 토폴로지를 이용한 개인 환경간 상호작용 파악 공간 분석)

  • Lee, Byoung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.426-439
    • /
    • 2012
  • The goal of this study is to propose a new method to capture the qualitative person spatial behavior. Beyond tracking or indexing the change of the location of a person, the changes in the relationships between a person and its environment are considered as the main source for the formal model of this study. Specifically, this paper focuses on the movement behavior of a person near the boundary of a region. To capture the behavior of person near the boundary of regions, a new formal approach for integrating an object's scope of influence is described. Such an object, a spatio-temporally extended point (STEP), is considered here by addressing its scope of influence as potential events or interactions area in conjunction with its location. The formalism presented is based on a topological data model and introduces a 12-intersection model to represent the topological relations between a region and the STEP in 2-dimensional space. From the perspective of STEP concept, a prototype analysis results are provided by using GPS tracking data in real world.

  • PDF

Variation Characteristics of the Groundwater Level of Natural Vegetation and Sandy Beaches (식생/모래기반 자연해빈에서의 지하수위 변동특성)

  • Park, JungHyun;Yoon, Han-sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.62-73
    • /
    • 2016
  • The variation of groundwater by wave, tide and precipitation conditions is closely related to the vegetation environment at the natural vegetation and sandy based beach, and it has a significant impact on the vegetation development and ground stabilization. In this study, the water temperature, electrical conductivity, and pressure were monitored at five observational stations normal to the Jinu-do(Island) shoreline of Nakdong river estuary from March 2012 to September 2014 (approximately 799 days) with the aim of measuring the variation in groundwater-table characteristics. The purpose of the study was to identify factors (tide, wave etc.) affecting groundwater-table variation using time series and correlation analysis, and to record spatial variations in the groundwater level and electrical conductivity as a result of storm events. The observational station in the intertidal zone was strongly affected by wave period and tide level. During the storm period, the groundwater-table and electrical conductivity were stabilized at the edge of sand dunes, vegetation, and areas of transition between freshwater and seawater.

Examining Velocity Estimation Equations of Debris Flow Using Small-scaled Flume Experiments (소형 수로실험을 통한 토석류 유동속도 추정식 평가)

  • Eu, Song;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.424-430
    • /
    • 2017
  • With its rapid velocity and wide deposition, debris flow is a natural disaster that causes loss of human life and destruction of facility. To design effective debris barriers, impact force of debris flow should be first considered. Debris flow velocity is one of the key features to estimate the impact force of debris flow. In this study, we conducted small-scale flume experiments to analyze flow characteristics of debris flow, and determine flow resistance coefficients with different slope gradients and sediment mixtures. Flow velocity significantly varied with flume slope and mixture type. Debris flow depth decreased as slope increased, but difference in depth between sediment mixtures was not significant. Among flow resistance coefficients, Chezy coefficient ($C_1$) showed not only relatively highest goodness of fit, but also constant value ($20.19m^{-1/2}\;s^{-1}$) regardless the scale of debris flow events. The overall results suggested that $C_1$ can be most appropriately used to estimate flow velocity, the key factor of assessing impact force, in wide range of debris flow scale.

Power Aware Routing Protocol in Multimedia Ad-hoc Network Considering Hop Lifetime of Node

  • Huh, Jun-Ho;Kim, Yoondo;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • The purpose of this research is to extend Ad-hoc network system lifetime with the proposed routing protocol which has considered hop lifetimes of the nodes while guaranteeing QoS in the establishment process of Ad-hoc network communication paths. Based on another power aware routing system that proposed in the advanced research [1], we are proposing an alternative power aware routing system in which nodes' hop lifetimes are compared in order to extend the lifetime of an Ad-hoc network system and delay factors have been considered for the assurance of QoS. The research of the routing protocol in this paper, which aims to maximize the system survival time considering power consumption status during the path searching in MANET and pursues the mechanism that controls hop delays for the same reason, can be applied to the study of WSN. The study concerning such phenomena is essential so that the proposed protocol has been simulated and verified with NS-2 in Linux system focusing on the lifetimes of the hops of the nodes. Commercialization of smart devices and arrival of the ubiquitous age has brought about the world where all the people and things are connected with networks. Since the proposed power aware method and the hop delay control mechanism used to find the adequate communication paths in MANET which mainly uses batteries or in WSN, they can largely contribute to the lifetime extension of the network system by reducing power consumptions when utilized for the communications attempts among soldiers during military operation, disaster areas, temporary events or exhibitions, mobile phone shadow areas, home networks, in-between vehicle communications and sense networks, etc. This paper presents the definitions and some advantages regarding the proposed outing protocol that sustain and extend the lifetime of the networks.

  • PDF

Emergency and Permanent Repair Technology for Damaged Road Bases and Slopes using Gravel-Netting Concrete (도로 및 비탈면 유실 항구적 긴급복구를 위한 골재망 콘크리트 활용기술 개발)

  • Kim, Yongjae;Jung, Haekook;Kim, Seungwon;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.9-17
    • /
    • 2018
  • PURPOSES : The frequency and severity of natural disasters such as torrential rain or typhoons have become increasingly significant worldwide. Events such as summer typhoons and localized torrential downpour can cause severe damages to a residential area and road networks, resulting in serious harm to the daily lives of people, especially in rural areas by isolating residents from road networks. An immediate and emergency repair technology for the collapsed road networks is urgently needed. This study introduces a new technology to repair road bases or slopes. METHODS : The development of new technology for emergency and permanent repair consists of first, packing of cement paste-coated gravel, second, combining appropriate equipment, and third, conducting a field applicability test. In this research, the compressive strength of cement pastecoated gravel, gravel-netting concrete properties, and packing efficiency were determined, and a full scale field mock-up test was carried out. RESULTS : The compressive strength of the cement paste-coated gravel concrete satisfied the required limit for road base of 5 MPa after 7 days. With appropriate netting materials and packing size, gravel-netting concrete was successful up to a slope of 1:1.5. The full scale field mock-up test showed efficiency in the field and penetration resistance performance. CONCLUSIONS : The new technology of emergency and permanent repair for damaged road bases and slopes, introduced in this study, showed satisfactory performance. The technology is expected to be applied in the field when construction procedures and quality specifications are made.

S-wave Relative Travel Time Tomography for East Asia (동아시아 S파 상대 주시 토모그래피)

  • Cho, Seongheum;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • We performed seismic imaging based on relative S-wave travel times to examine S-wave velocity of upper mantle structure beneath East Asia. We used teleseismic events recorded at 129 broadband stations of the Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea Meteorological Administration (KMA), and National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along plate boundaries around the Japanese islands region. These anomalies may indicate subducting Pacific and Philippine Sea plates. On the other hand, a low-velocity anomaly is revealed beneath east of the Korean peninsula down to around 300 km depth, which is thought to be related to the formation of the Ulleung basin and the Ulleung island. Low-velocity anomalies revealed beneath the Jeju island may imply that the formation and volcanism of the Jeju island have been caused by magmatic sources from the deep mantle.

Development of Evaluation Indices for Ecological Restoration of Degraded Environments Near DMZ in the Republic of Korea (DMZ 주변 훼손지의 생태복원 평가지표 개발)

  • Lee, Peter Sang-Hoon;Lee, Sanghyuk;Lee, Sol Ae;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.135-151
    • /
    • 2015
  • DMZ is considered as an ecologically sensitive landscape and one of the highest biodiversity regions in the Republic of Korea. There have been, albeit the significant value, increased interests in developing this region for a variety of purposes including tourism and commemorative events. As this region has been already facing a range of problems derived from previous development, natural disaster and invasive species, the necessity for active management of ecological health within this region has been increased, which weighs the importance of executing ecological restoration. The objective of this study was to develop evaluation indices as an effective management means of properly evaluating ecological restoration and sustainably maintaining the restored conditions on a long-term scale. Through literature review existing evaluation indices related to restoration were collected, and then the most suitable indices were selected based upon two interviews and one questionnaire survey targeting experts in the relevant field to ecological restoration. They were categorized by two major division and their subclasses (Ecological base - vegetation structure & composition, habitat characteristics, soil environment; landscape ecology - connectivity, landscape patch, boundary & surrounding) and 40 indices. These indices were considered helpful to comprehensively evaluate ecological restoration on degraded environments within ecologically sensitive areas, and sustainably manage target areas by employing a long-term monitoring approach. As this result played a meaningful role in providing the fundamentals of evaluating ecological restoration, it should develop a suitable evaluation system through further research.