• Title/Summary/Keyword: Disaster Area

Search Result 1,508, Processing Time 0.035 seconds

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

Improvement and evaluation of flood control safety utilizing a flood risk map - Yeong-Seomjin River Basin - (홍수위험지도를 활용한 치수안전도 방법 개선 및 평가 - 영·섬진강 유역중심으로 -)

  • Eo, Gyu;Lee, Sung Hyun;Lim In Gyu;Lee, Gyu Won;Kim, Ji Sung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.21-33
    • /
    • 2024
  • Recently, the patterns of climate change-induced disasters have become more diverse and extensive. To develop an effective flood control plan, Korea has incorporated the concept of Potential Flood Damage (PFD) into the Long-Term Comprehensive Water Resources Plan to assess flood risk. However, concerns regarding the PFD have prompted numerous studies. Previous research primarily focused on modifying and augmenting the PFD index or introducing new indices. This study aims to enhance the existing flood control safety evaluation method by utilizing a flood risk map that incorporates risk indices, specifically focusing on the Yeong-Seomjin river basin. The study introduces three main evaluation approaches: risk and potential analysis, PFD and flood management level analysis, and flood control safety evaluation. The proposed improved evaluation method is expected to be instrumental in evaluating various flood control safety measures and formulating flood control plans.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

The Change in the Influence of Environmental Factors on Depression by the COVID-19 Pandemic (COVID-19 팬데믹 직전과 직후 우울감에 영향을 미치는 지역환경 요인의 변화 연구)

  • Kim, EunJi;Jung, Suyoung;Jun, Hee-Jung
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.1
    • /
    • pp.19-35
    • /
    • 2024
  • This research aims to compare and analyze changes in local physical environmental factors affecting mental health before and after the occurrence of COVID-19. The research question is: "Did the influence of environmental factors affecting mental health change after the emergence of the COVID-19 pandemic?" To examine the research question, the study considered the year 2019, right before COVID-19, and the year 2020, the year when COVID-19 occurred, as the temporal scope of the research. For the empirical analysis, we used multilevel logistic analysis was conducted using data from the Community Health Survey for each year and the National Statistical Office (KOSIS). The results can be summarized as follows: After the occurrence of COVID-19, physical environmental factors showed stronger associations with mental health compared to before the emergence of COVID-19. Specifically, it was found that park area per thousand people and the proportion of pedestrian-only road areas were further associated with a decrease in depression. Based on these findings, this study suggests the need for improving and constructing the physical environment in local communities for preventing mental health issues during disaster situations such as COVID-19.

Study on Radioactive Material Management Plan and Environmental Analysis of Water (II) Study of Management System in Water Environment of Japan (물 환경의 방사성 물질 관리 방안과 분석법에 관한 연구 (II) 일본의 물 환경 방사성물질 관리 체계에 대한 고찰)

  • Han, Seong-Gyu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.305-313
    • /
    • 2015
  • After Fukushima Daiichi nuclear disaster in 2011, study and maintenance of monitoring systems have been made at home and abroad. As concerns about radioactive contamination of water have increased in Korea, update of maintenance of managing radioactive materials in water is being made mainly by Ministry of Environment. In this study, we analysed current state of monitoring system modification in Japan, the country directly involved and neighboring country. According to the result, Japan modified the legislations first. Then Ministry of Education, Culture, Sports, Science and Technology (MEXT) provides theoretical background of radiological monitoring. And Ministry of the Environment actually watches state of water pollution in public waters and underground water. Finally related agencies like local government are monitoring current state of radioactive contamination in water environment. By region, local monitoring stations share the investigation of the whole country. Also, additional monitoring is running around nuclear facilities. After Fukushima disaster, monitoring for area near Fukushima is added. Among the reference levels, management target value of drinking water and tap water is 10 Bq/kg, and those of public water and underground water are 1 Bq/L. Measuring intervals varied from every hour to once a year, regularly or irregularly depending on the investigation. The main measuring items are air dose rate, gross ${\alpha}$, gross ${\beta}$, ${\gamma}$ radionuclide, Cs-134, Cs-137, Sr-89, Sr-90, I-131, and so on. In comparison, regulations about general public water in Korea need to be modified, while those about area near nuclear facility and drinking water are organized well. In future, therefore, domestic system would be expected to be modified with making reference to the guidelines like WHO's one. As good case of applying international guideline to domestic environment, Japanese system could be a reference when general standard of radioactivity in public water is made in Korea.

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.

GIS Spatial Analysis of Vulnerability of Protected Cultivation Area to Meteorological Disaster : A Case Study of Jeollanambuk Province, South Korea (GIS를 이용한 시설재배의 기상재해 취약지역 해석 - 전라남북도의 사례를 중심으로 -)

  • Kim, Dong Hyeon;Kang, Dong Hyeon;Lee, Si Young;Son, Jin Kwan;Park, Min Jung;Yoon, Yong-Cheol;Yun, Sung-Wook
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2017
  • Recently the increase in an abnormal climate events and meteorological disasters which causes a great damage to greenhouse facilities. To minimize and evaluate the expected damages it is necessary to prepare countermeasures and a management system in advance. For this purpose, a quantitative analysis of weather and abnormal climate are needed to investigate protected cultivation areas which are vulnerable to natural disasters. This study focused on protected cultivation areas in Jeolla province, South Korea. Surrogate variables were calculated to analyze the vulnerable areas to meteorological disasters, and spatial distribution analysis was also performed by using GIS to present vulnerable areas on map. The map thus created and was compared with actual data of damages by meteorological disasters which occurred in target areas. The result of the comparison is as follows: About 50% of the target areas showed an agreement between the map created in this study and the actual data, these areas includes Gwangju metropolitan city, Naju city, Yeongam County, Jangseong County, Hampyeong County, and Haenam County. On the other hand, other areas, including Gunsan city, Mokpo city, and Muan County, suffered low damage in spite of high levels of vulnerability to meteorological disasters. This result was considered to be affected by such variables as different structural designs and management systems of greenhouses by region. This study carried out an analysis of meteorological data to find out more detailed vulnerability to protected cultivation area and to create a map of vulnerable protected cultivation areas. In addition, the map was compared with the record of natural disasters to identify actual vulnerable areas. In conclusion, this study can be utilized as basic data for preventing and reducing damages by meteorological disasters in terms of design and management of greenhouses.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.

A Model Experiment Study to Secure the Straight Line Distance between the Air Inlet and Exhaust Section of the Living Room (거실제연설비중 공기유입구와 배출구간 직선거리 확보를 위한 모형실험연구)

  • Saeng-Gon Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.439-450
    • /
    • 2023
  • Purpose: When conducting fire inspections in Korea, there are objects that violate the fire protection regulations that require a straight line distance of more than 5m between the air inlet and the discharge section if the floor area is less than 400m2, and this paper analyzes the reasons and conducts a model experimental study to support the need for related fire protection regulations. Method: Domestic firefighting objects were investigated and confirmed, domestic and foreign papers, policies, and laws and regulations were examined, and spaces with a straight line distance of less than 5m and more than 5m between the air inlet and discharge section were selected and analyzed through model experiments in a living room of less than 400m2 . Result: When examining the domestic fire protection regulations (NFPCNational Fire Perpormance Code), the separation distance between the air inlet and the outlet is more than 5m when the floor area is less than 400m2 , but as a result of the actual investigation, it was confirmed that there are firefighting objects that cannot keep the separation distance. In addition, when a paper review of overseas fire protection regulations for a straight line distance of more than 5m showed that there was no regulation on the straight line distance between the air inlet and the discharge section, the model experiment showed that the discharge speed was better when the straight line distance between the air inlet and the discharge section was more than 5m than when it was less than 5m. Conclusions: In this study, when examining overseas fire laws and regulations by comparing the performance of the fire protection ratio for the straight line distance between the air inlet and the exhaust section, there is no mandatory regulation for the straight line distance, but the domestic fire protection regulations (NFPCNational Fire Perpormance Code) require more than 5m. It is hoped that this will be reflected in the design stage in the future, and a foundation will be laid to reduce the responsibility and burden of fire superintendents.