• Title/Summary/Keyword: Disassembly Evaluation

Search Result 42, Processing Time 0.019 seconds

2-Stage Optimal Design and Analysis for Disassembly System with Environmental and Economic Parts Selection Using the Recyclability Evaluation Method

  • Igarashi, Kento;Yamada, Tetsuo;Inoue, Masato
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.52-66
    • /
    • 2014
  • Promotion of a closed-loop supply chain requires disassembly systems that recycle end-of-life (EOL) assembled products. To operate the recycling disassembly system, parts selection is environmentally and economically carried out with non-destructive or destructive disassembly, and the recycling rate of the whole EOL product is determined. As the number of disassembled parts increases, the recycling rate basically increases. However, the labor cost also increases and brings lower profit, which is the difference between the recovered material prices and the disassembly costs. On the other hand, since the precedence relationships among disassembly tasks of the product also change with the parts selections, it is also required to optimize allocation of the tasks in designing a disassembly line. In addition, because information is required for such a design, the recycling rate, profit of each part and disassembly task times take precedence among the disassembly tasks. However, it is difficult to obtain that information in advance before collecting the actual EOL product. This study proposes and analyzes an optimal disassembly system design using integer programming with the environmental and economic parts selection (Igarashi et al., 2013), which harmonizes the recycling rate and profit using recyclability evaluation method (REM) developed by Hitachi, Ltd. The first stage involves optimization of environmental and economic parts selection with integer programming with ${\varepsilon}$ constraint, and the second stage involves optimization of the line balancing with integer programming in terms of minimizing the number of stations. The first and second stages are generally and mathematically formulized, and the relationships between them are analyzed in the cases of cell phones, computers and cleaners.

Development of Integrated System for DfD (Design for Disassembly) of Automobile in Design Phase (설계단계 적용을 위한 차량의 해체용이설계(DfD: Design for Disassembly) 통합시스템 개발)

  • Cho, Jong-Rae;Kwon, Jae-Soo;Hong, Byeong-Kwon;Hong, John-Hee;Kwon, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.58-66
    • /
    • 2007
  • In order to improve the recyclability and to reduce the recycling cost and time, the disassembly technology should be systemized because the worn out products can be reused or recycled after disassembly processes. This paper attempts to propose the integrated CATIA-based DfD (Design for Disassembly) support system to promote the disassemblability of products. The system is composed of two modules; evaluation of disassemblability, generation of DfD alternatives. The disassemblability of current vehicle is evaluated to identify the weak point in terms of disassembly using the DELMIA and developed evaluation system. Furthermore a new expert system is developed to propose the optimal redesign rule and principle for generating the DfD alternatives. In order to generate the DfD alternatives, a CATIA-based design support system is implemented. The system can provide quick results and ensure consistency and completeness of the redesign alternatives.

Evaluation Methodology Development of Disassembly Through Axiomatic Design (공리적 설계를 이용한 분해성 평가방법 개발)

  • Kim, Young-Kyu;Cho, Kyu-kab;Moon, Yong-rak;Cha, Sung-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.197-202
    • /
    • 2001
  • This paper proposes a design method for improving the disassembly by using the axiomatic approach. A product developer must design disassembly as well as assembly when designing the structure of a product. Axiomatic approach is a design tool that optimizes design. In this paper design evaluation method using information axiom sets impact variables and value function. As a result, examining the relationship between the functional requirements and evaluating the information can optimize designs.

  • PDF

Disassembly Priority for Recoverying Remanufacturable Parts(Core) in ELV (ELV에서 재제조 부품을 회수하기 위한 해체 우선순위)

  • Son, Woo Hyun;Park, Sang Jin;Mok, Hak Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2019
  • Today, due to the development of the industrial society, the need for sustainable research and development for energy depletion and environmental protection is increasing. Among sustainable research, remanufacturing is an ideal way to meet environmental and economic aspects. In this paper, we investigated the End-of-Life Vehicle(ELV) in order to find the recovery method of the core which is the preceding stage of remanufacturing. The number of End-of-Life Vehicle is increasing year by year, but the core recovery rate from ELV is still low. Therefore, a methodology to determine the disassembly priority of each part is proposed to increase the core recovery rate. Based on the analysis Table through the disassembly process, the decision rule was selected and the weighted score evaluation Table was completed to complete the disassembly priority system. Finally, evaluation was made on gasoline vehicles to determine priorities.

Design Principle for Disassemblability of Products (제품의 분리용이성을 위한 설계원칙)

  • Mok, Hak-Soo;Han, Chang-Hyo;Jeon, Chang-Su;Song, Min-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-57
    • /
    • 2008
  • This paper shows the procedure to decide an optimal design principle for improving the disassemblability with considering of disassembly conditions. On the bssis of the disassembly mechanism of products and the structure of parts and subassembly, the disassemblability is classified into four categories: graspability, accessibility, transmission of disassembly power and handling. The weighting values of the influential factors are calculated by the method of AHP(Analytic Hierarchy Process). The disassemblability is evaluated quantitatively. We established some score tables for the evaluation. Using these score tables, several principles for higher disassemblability in accordance with work conditions can be decided. An optimal design principle can be found by the comparison with the total scores of some disassembly conditions.

Injury Risk Analysis for Product Disassembly and Reassembly Process in Remanufacturing (재제조에서 제품 해체 및 재조립 공정의 상해 위험성평가)

  • Jeong, Jae Yeong;Park, Sang Jin;Son, Woo Hyun;Mok, Hak Soo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.112-123
    • /
    • 2018
  • In this paper, we focused on the safety of workers in a remanufacturing process where a risk analysis is not carried out and suggested a criteria for evaluating injury risk. We analyzed a disassembly and a reassembly, which are important for the remanufacturing process. The disassembly includes the disassembly of product and the disassembly process of part and the reassembly includes only reassembly of part. First of all, we analyzed the remanufacturing process and a type of injury. Then, we reviewed the standards and determined the criteria for a severity and an occurrence. We set a bigger weight for the severity to allow the greater impact. And the injury risk score was defined as a sum of the weighted severity and the weighted occurrence. We conducted a qualitative analysis of the experience of field workers based on the criteria we set up. Questionnaires for the evaluation were formulated through interviews with experts.

A Knowledge-based System for Assembly Process Planning (조립 공정계획을 위한 지식기반 시스템)

  • Park, Hong-Seok;Son, Seok-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.29-39
    • /
    • 1999
  • Many industrial products can be assembled in various sequences of assembly operations. To save time and cost in assembly process and to increase the quality of products, it is very important to choose an optimal assembly sequence. In this paper, we propose a methodology that generates an optimal assembly sequence by using the knowledge of experts. First, a product is divided into several sub-assemblies. Next, the disassembly sequences of sub-assembly are generated using disassembly rules and special information can be extracted through the disassembly process. By combining every assembly sequence of sub-assemblies, we can generate all the possible assembly sequences of a product. Finally, the expert system evaluates all the possible assembly sequences and finds an optimal assembly sequence. It can be achieved under consideration of the parameters such as assembly operation, tool change, safety of part. basepart location, setup change, distance, and orientation. The developed system is applied to UBR(Unit Bath Room) example.

  • PDF

The Complexity Evaluation System of Automobile Subassembly for Recycling (자원 재활용을 위한 자동차 조립군의 복잡도 평가시스템)

  • Mok, Hak-Soo;Moon, Kwang-Sup;Kim, Sung-Ho;Moon, Dae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.132-144
    • /
    • 1999
  • In this study, the complexity of the product was evaluated quantitatively considering the product structure, assembly process and disassembly process. To evaluate the complexity of the product, subassemblies of automobile were analyzed and then characteristics of part and subassembly were determined according to product structure, assembly process and disassembly process. Evaluation criteria of complexity were determined considering each characteristics of part and subassembly. Experiential evaluation was accomplished by classified evaluation criteria and time-motion evaluation was accomplished by the relational motion factor with characteristics of part and subassembly in MTM(Methods Time Measurement) and WF(Work Factor). The total complexity of product was determined by experiential evaluation and time-motion evaluation.

  • PDF

Evaluation of Ease of Exchange of Subassembly Considering Module (모듈을 고려한 조립군의 교체성 평가)

  • 목학수;양태일;곽동영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.170-180
    • /
    • 2000
  • In this paper, to evaluate ease of exchange of subassembly considering module, it needs to analyze structure and function of subassembly, assembly and disassembly process. Exchange process of module can be divided into pre-process and in-process, and determination factors of exchange process are defined by analyzing characteristics of assembly and disassembly process. Based on the analysis of characteristics for structure and function of subassembly, influential factors of module can be proposed. Considered the interrelationship between determination factors of ease of exchange and influencing factors of module, ease of exchange can be evaluated.

  • PDF

Development of the Disassemblability Evaluation Methods of the Products for Remanufacturing (재제조를 위한 제품의 분해성 평가방법의 개발)

  • Yi, Hwa-Cho;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.134-142
    • /
    • 2007
  • In this study, two methods to evaluate the disassemblability of the parts are proposed, which are constructed from the concepts of ease-of-disassembly and disassembly time. A method to evaluate the disassemblability of the products is consequently developed using the concept of minimum parts. The methods are applied to evaluate the disassemblability of computer cases. The results show the conclusions that the new model has less disassemblability than the old one. These methods are expected to be used for the evaluation of the possibility of remanufacturing and recycling of a part.

  • PDF