• Title/Summary/Keyword: Disassembly

Search Result 265, Processing Time 0.026 seconds

Development of Lifter for ELV Disassembly (폐자동차 해체용 Lifter의 개발)

  • 이현용;송준엽;강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.856-859
    • /
    • 2003
  • Currently, the domestic recycle rate of ELV parts is about 3%. The reason of the row rate of it is due to that consumer can not obtain the needed ELV parts. In order to supply the good parts to consumer. the equipment of the ELV disassembly is required. This research is to developed the lifter for ELV disassembly by considering the references such as the disassembly tool and equipment of the domestic and foreign ELV disassembly company.

  • PDF

Determination of Design Parameters for Automobile Parts Recycling (자동차 부품의 재활용을 위한 설계시의 주요인자 결정)

  • 목학수;문광섭;박홍석;성재현;최흥원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.159-171
    • /
    • 2003
  • In this paper, same parts of a domestic automobiles and foreign automobiles are disassembled fur the evaluation of disassemblability, especially door trim and bumper. Influencing factors of disassembly are determined by the classification of bottleneck process in disassembly process. On the bases of disassembly sequence and structure of parts and subassembly, disassemblability is classified into aye categories. The influencing factors, which are related with the five categories are determined. By these relations, the checklist for disassembly evaluation is draw up and score tables of checked factors are established. For the establishing the disassembly score tables, the weighting values of each five categories are calculated by the disassembly test of automobiles and then, the weighting values of each influencing factors of five categories are calculated by the method of AHP (Analytic Hierarchy Process). And the last, the weighting values are modified and recalculated from the disassembly test. Using these weighting values, the score of influencing factors are determined and then, the score tables are established based on the score of influencing factors.

Model for the description of disassembly sequence structure (분해순서 구조 기술을 위한 모델)

  • 박홍석;목학수;최흥원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.422-425
    • /
    • 2001
  • The realization of the avoidance, decrease and utilization of waste can be made through reduction of resource consumption during product production and use. Beside that it is desirable to regain the resource attached to products and components. The same resources can be much used in product and mater all cycle through their reuse and regeneration In order to improve the use productivity of resource the disassembly make up the substantial prerequisite. In this paper a model describing the disassembly sequence structure is introduced under consideration of the influential facts related to disassembly process planning rules for disassembly sequence planning are derived from that.

  • PDF

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.

2-Stage Optimal Design and Analysis for Disassembly System with Environmental and Economic Parts Selection Using the Recyclability Evaluation Method

  • Igarashi, Kento;Yamada, Tetsuo;Inoue, Masato
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.52-66
    • /
    • 2014
  • Promotion of a closed-loop supply chain requires disassembly systems that recycle end-of-life (EOL) assembled products. To operate the recycling disassembly system, parts selection is environmentally and economically carried out with non-destructive or destructive disassembly, and the recycling rate of the whole EOL product is determined. As the number of disassembled parts increases, the recycling rate basically increases. However, the labor cost also increases and brings lower profit, which is the difference between the recovered material prices and the disassembly costs. On the other hand, since the precedence relationships among disassembly tasks of the product also change with the parts selections, it is also required to optimize allocation of the tasks in designing a disassembly line. In addition, because information is required for such a design, the recycling rate, profit of each part and disassembly task times take precedence among the disassembly tasks. However, it is difficult to obtain that information in advance before collecting the actual EOL product. This study proposes and analyzes an optimal disassembly system design using integer programming with the environmental and economic parts selection (Igarashi et al., 2013), which harmonizes the recycling rate and profit using recyclability evaluation method (REM) developed by Hitachi, Ltd. The first stage involves optimization of environmental and economic parts selection with integer programming with ${\varepsilon}$ constraint, and the second stage involves optimization of the line balancing with integer programming in terms of minimizing the number of stations. The first and second stages are generally and mathematically formulized, and the relationships between them are analyzed in the cases of cell phones, computers and cleaners.

Redesign of Computer Case by Consideration of Environmental Influence (환경 영향력을 고려한 컴퓨터 케이스 재설계)

  • 김인호;오수철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, a redesign of an existing computer case is Proposed by applying some guide lines of assembly and disassembly which have positive effects on environment. Some problems such as Increase of number of disassembly and vibration, and unfittable difficulty in assembly and disassembly of coy-ers are recognized through analysis of geometrical structure in view of both assembly and disassembly. A solution of these problems is proposed by ideas of positive environmental influence through ease of assembly and disassembly. Design for Environment Software is used to evaluate both redesigned and existing products. Time of assembly and disassemb]y and MET-point are especially calculated by the software, and these data give us a good guide for analysis of ease of assembly, ease of disassembly and environmental influence in both products.

Minmax Regret Approach to Disassembly Sequence Planning with Interval Data (불확실성 하에서 최대후회 최소화 분해 계획)

  • Kang, Jun-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.192-202
    • /
    • 2009
  • Disassembly of products at their end-of-life (EOL) is a prerequisite for recycling or remanufacturing, since most products should be disassembled before being recycled or remanufactured as secondary parts or materials. In disassembly sequence planning of EOL products, considered are the uncertainty issues, i.e., defective parts or joints in an incoming product, disassembly damage, and imprecise net profits and costs. The paper deals with the problem of determining the disassembly level and corresponding sequence, with the objective of maximizing the overall profit under uncertainties in disassembly cost and/or revenue. The solution is represented as the longest path on a directed acyclic graph where parameter (arc length) uncertainties are modeled in the form of intervals. And, a heuristic algorithm is developed to find a path with the minimum worst case regret, since the problem is NP-hard. Computational experiments are carried out to show the performance of the proposed algorithm compared with the mixed integer programming model and Conde's heuristic algorithm.

Disassemblability Evaluation Method & Application using Axiomatic Approach (정보공리적 분해성 평가 방법과 적용)

  • Kim, Young-Kyu;Cho, Kyu-Kab;Cha, Sung-Woon;Jeong, Sang-Jin;Kweon, Sung-Woo
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The paper describes disassemblability evaluation method using axiomatic approach. In recent industry, it is necessary to develope high recyclable environmental product due to green consumer and environmental regulations. Disassembly stage is prior to recycling. Disaassembly time data is determined previously in order to calculate the disassembly segments and disassembly sequence. In this paper the evaluation method of disassembly segment/sequence and disassembly time database are suggested. A case study of monitor product was showed.

  • PDF

Design of a Method for Disassembly Works on Recycle Products

  • Matsumoto, Toshiyuki;Yahata, Yuko;Shida, Keisuke
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • This study proposes a new framework for designing disassembly methods. In recent years, environmental problems have become global issues. Recycling of used products or resources is recognized as a matter of significance since it may help reduce the risk of exhausting natural resources. Considering possible exhaustion of limited natural resources in the near future, reuse of products would gain more environmental significance. As yet, it relies hugely on manual disassembly, which labor cost places burden on the total recycling cost. The purpose of this study is to propose a methodology designing for manual disassembly works, and a creation method of a jig. By focusing on parts' connection and attachment relationship, parts are categorized in 5 categories (parent part, joint key part, attaching key part, child part, and independent part) according to the features that parts possess, and 3 kinds of connection relationships (parent part-joint key part connection, parent part-independent part connection and child part-child part connection) are clarified. Connection relationship and attachment relationship charts have also been created, and utilizing them, disassembly orders are settled, and a disassembly jig is devised. The proposed methodology is also applied to a real product and its work time is improved 42% form 31 to 13 seconds.

A Study on the Method of Disassembly Time Evaluation of a Product (제품의 분해시간 산출방법에 관한 연구)

  • 이화조;주해호;박영찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.232-240
    • /
    • 2003
  • In this paper, a method of disassembly time evaluation for a product has been proposed. The product designer can predict the ability of disassembly for a given product in terms of time by considering a type, size, weight, connection parts, and the movement distance of the product. The equation for calculating disassembly time were derived by applying the basis motion status of worker and some informations of connection parts, various tools, and many different type of assembly structures. The developed method of evaluating disassembly time has been applied to disassemble the product by manual labor. The proposed method has shown that the actual disassembly time was well predicted.