• Title/Summary/Keyword: Directional feature

Search Result 164, Processing Time 0.031 seconds

Improvement of Historical-Hanja Recognition Using a Nonlinear Transform of Contour Directional Feature Vectors

  • Kim, Min Soo;Kim, Jin Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.503-511
    • /
    • 2004
  • In Korea, OCR-based techniques have been developed for digital library construction of historical documents. In this paper, we propose the nonlinear transform of contour directional feature (CDF) vectors using log it and power transforms with skewness criterion to enhance the discriminant power. Experiments were conducted using samples from Seung-jung-won diaries (Diaries of King's Secretaries). Our results show that proposed method outperforms the others like Box-Cox transform in this database.

Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network (Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식)

  • Yun, Jae-Jun;Park, Cheong-Sool;Kim, Jun-Seok;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2011
  • Manufacturing companies usually manage the process to achieve high quality using various types of control chart in statistical process control. When an assignable cause occurs in a process, the data in the control chart changes with different patterns by the specific causes. It is important in process control to classify the CCP (Control Chart Pattern) recognition for fast decision making. In former research, gathered data from process used to apply as raw data, leads to degrade the performance of recognizer and to decrease the learning speed. Therefore, feature based recognizer, employing feature extraction method, has been studied to enhance the classification accuracy and to reduce the dimension of data. We propose the method to extract features that take the distances between CCP data and reference vector generated from BDK (Bi-Directional Kohonen Network). We utilize those features as the input vectors in ANN (Artificial Neural Network) and compare with raw data applied ANN to evaluate the performance.

Stereo Matching Method using Directional Feature Vector (방향성 특징벡터를 이용한 스테레오 정합 기법)

  • Moon, Chang-Gi;Jeon, Jong-Hyun;Ye, Chul-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.

A Directional Feature Extraction Method of Each Region for the Classification of Fingerprint Images with Various Shapes (다양한 형태의 지문 이미지 분류를 위한 영역별 방향특징 추출 방법)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.887-893
    • /
    • 2012
  • In this paper, we propose a new approach to extract directional features based on directional patterns of each region in fingerprint images. The proposed approach computes the center of gravity to extract features from fingerprint images of various shapes. According to it, we divide a fingerprint image into four regions and compute the directional values of each region. To extract directional features of each region from a fingerprint image, we spilt direction values of ridges in a region into 18 classes and compute frequency distribution of each region. Through the result of our experiment using FVC2002 DB database acquired by electronic devices, we show that directional features are effectively extracted from various fingerprint images of exceptional inputs which lost all or part of singularities. To verify the performance of the proposed approach, we explained the process to model Arch, Left, Right and Whorl class using the extracted directional features of four regions and analyzed the classification result.

Feature Extraction of Asterias Amurensis by Using the Multi-Directional Linear Scanning and Convex Hull (다방향 선형 스캐닝과 컨벡스 헐을 이용한 아무르불가사리의 특징 추출)

  • Shin, Hyun-Deok;Jeon, Young-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.99-107
    • /
    • 2011
  • The feature extraction of asterias amurensis by using patterns is difficult to extract all the concave and convex features of asterias amurensis nor classify concave and convex. Concave and convex as important structural features of asterias amurensis are the features which should be found and the classification of concave and convex is also necessary for the recognition of asterias amurensis later. Accordingly, this study suggests the technique to extract the features of concave and convex, the main features of asterias amurensis. This technique classifies the concave and convex features by using the multi-directional linear scanning and form the candidate groups of the concave and convex feature points and decide the feature points of the candidate groups and apply convex hull algorithm to the extracted feature points. The suggested technique efficiently extracts the concave and convex features, the main features of asterias amurensis by dividing them. Accordingly, it is expected to contribute to the studies on the recognition of asterias amurensis in the future.

A study on local facial features using LDP (LDP를 이용한 지역적 얼굴 특징 표현 방법에 관한 연구)

  • Cho, Young Tak;Jung, Woong Kyung;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we proposed a method for representing local facial features based on LDP (Local Directional Pattern). To represent both PFF (Permanent Facial Features) and TFF (Transient Facial Features) effectively, the proposed method configure local facial feature vectors based on overlapped blocks for each facial feature in the forms of various size and shape. There are three advantages - it take advantages of geometric feature based method; it shows robustness about detection error using movement characteristics of each facial feature; and it shows reduced sampling error because maintain spatial information caused by block size variability. Proposed method shows better classification accuracy and reduced amount of calculation than existing methods.

Multimodal Fingerprint Matching Based on Minutiae Points and Directional Features (특징점 및 방향 특징에 기반한 멀티모달 지문 매칭)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2529-2531
    • /
    • 2009
  • A simple multimodal fingerprint recognition method based on two types of feature vectors such as minutiae points and directional features is proposed, where Directional Filter Bank (DFB) is used to extract directional features. Experimental results show that the proposed method can effectively combine minutiae- and DFB-based methods and produce a better matching capability in the poor quality fingerprint image.

Detection of Forged Signatures Using Directional Gradient Spectrum of Image Outline and Weighted Fuzzy Classifier

  • Kim, Chang-Kyu;Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1639-1649
    • /
    • 2004
  • In this paper, a method for detection of forged signatures based on spectral analysis of directional gradient density function and a weighted fuzzy classifier is proposed. The well defined outline of an incoming signature image is extracted in a preprocessing stage which includes noise reduction, automatic thresholding, image restoration and erosion process. The directional gradient density function derived from extracted signature outline is highly related to the overall shape of signature image, and thus its frequency spectrum is used as a feature set. With this spectral feature set, having a property to be invariant in size, shift, and rotation, a weighted fuzzy classifier is evaluated for the verification of freehand and random forgeries. Experiments show that less than 5% averaged error rate can be achieved on a database of 500 signature samples.

  • PDF

A feature-based motion parameter estimation using bi-directional correspondence scheme (쌍방향 대응기법을 이용한 특징점 기반 움직임 계수 추정)

  • 서종열;김경중;임채욱;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2776-2788
    • /
    • 1996
  • A new feature-based motion parameter estimation for arbitrary-shaped regions is proposed. Existing motion parameter estimation algorithms such as gradient-based algorithm require iterations that are very sensitive to initial values and which often converge to a local minimum. In this paper, the motion parameters of an object are obtained by solving a set of linear equations derived by the motion of salient feature points of the object. In order to estimate the displacement of the feature points, a new process called the "bi-directional correspondence scheme" is proposed to ensure the robjstness of correspondence. The proposed correspondence scheme iteratively selects the feature points and their corresponding points until unique one-to-one correspondence is established. Furthermore, initially obtained motion paramerters are refined using an iterative method to give a better performance. The proposed algorithm can be used for motion estimationin object-based image coder, and the experimental resuls show that the proposed method outperforms existing schemes schemes in estimating motion parameters of objects in image sequences.sequences.

  • PDF

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.