• Title/Summary/Keyword: Directional Information

Search Result 1,309, Processing Time 0.026 seconds

Optical Power Transfer of Grating-Assisted Directional Coupler with Three-Guiding Channels: TM modes Case

  • Ho, Kwang-Chun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.126-130
    • /
    • 2003
  • The optical power transfer of TM modes in grating-assisted directional couplers (GADCs) with three-guiding channels is rigorously evaluated by defining a novel coupling efficiency amenable to the rigorous analytical solutions of modal transmission-line theory (MTLT). The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the period, the duty cycle, and wavelength.

  • PDF

Design of the Broad-Band 3-dB Branch-Line Directional Coupler Using Exponential Transmission Line (지수함수적인 비균일 전송선을 이용한 광대역 3-dB 브랜치라인 방향성 결합기의 설계)

  • 하헌태;김세윤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.685-691
    • /
    • 1991
  • A broad-band 3-dB directional coupler is implemented by using cascaded exponential transmission line as branch lines. Compared with that of the uniform transmission line, the bandwidth of the proposed 3-dB branch-line directional cpoupler increases 2.96 times.

  • PDF

A Learning Automata-based Algorithm for Area Coverage Problem in Directional Sensor Networks

  • Liu, Zhimin;Ouyang, Zhangdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4804-4822
    • /
    • 2017
  • Coverage problem is a research hot spot in directional sensor networks (DSNs). However, the major problem affecting the performance of the current coverage-enhancing strategies is that they just optimize the coverage of networks, but ignore the maximum number of sleep sensors to save more energy. Aiming to find an approximate optimal method that can cover maximum area with minimum number of active sensors, in this paper, a new scheduling algorithm based on learning automata is proposed to enhance area coverage, and shut off redundant sensors as many as possible. To evaluate the performance of the proposed algorithm, several experiments are conducted. Simulation results indicate that the proposed algorithm have effective performance in terms of coverage enhancement and sleeping sensors compared to the existing algorithms.

An Implementation of a Current Controlled Bi-directional Inverter with ZVT Switching (ZVT 스위칭 되는 전류제어형 양방향 인버터의 구현)

  • Lee S.R.;Ko S.H.;Kim S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.149-152
    • /
    • 2001
  • A Single-phase bi-directional inverter Using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is Presented. It is shown that the ZACE(Zero Average Current Error) algorithm based polarized ramptime current control can provide a suitable interface between diode bridge-type resonant circuit DC link and the inverter. The current control algorithm is analyzed about how to design the circuit with analyzed switch which m ZVT operation for the main power switch The simulation and experimental results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the bi-directional inverter is operated.

  • PDF

Directional Information Processing Using Optical Rotating Kernel Operations (광회전 커널 오퍼레이션을 이용하는 방향성 정보 처리)

  • Yim Kul Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.78-86
    • /
    • 1993
  • A nonlinear method for directional information processing is introduced, along with an application of directional feature enhancement. In this method, an input is convolved with a 2-D ong, norrow kernel, which is rotated through 360 degree, continuously or discretely in a large number of steps. An output is given by some function of the convolution results. Linear features that are aligned with the kernel are enhanced, otherwise, removed or suppressed. The method presented is insensitive to variation in the dimension of linear features to be processed and preserves a good enhancement capability even for an image characterized by low contrast and spatially varying brightness in noisy backgroung. Effects of the kernel legnth and width on the performance are discussed. A possible hybrid optical-electronic implementation is also discussed.

  • PDF

Multi-views face detection in Omni-directional camera for non-intrusive iris recognition (비강압적 홍채 인식을 위한 전 방향 카메라에서의 다각도 얼굴 검출)

  • 이현수;배광혁;김재희;박강령
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.115-118
    • /
    • 2003
  • This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.

  • PDF

Performance Analysis of Directional CSMA/CA for IEEE 802.15.3c under Saturation Environments

  • Kim, Mee-Joung;Kim, Yong-Sang;Lee, Woo-Yong
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • In this paper, the directional carrier sense multiple access/collision avoidance (CSMA/CA) protocol in the immediate acknowledgement mode for IEEE 802.15.3c is analyzed under saturation environments. For the analysis, a sensing region and an exclusive region with a directional antenna are computed probabilistically and a Markov chain model in which the features of IEEE 802.15.3c and the effects of using directional antennas are incorporated is analyzed. An algorithm to find the maximal number of concurrently transmittable frames is proposed. The system throughput and the average transmission delay are obtained in closed forms. The numerical results show the impact of directional antennas on the CSMA/CA media access control (MAC) protocol. For instance, the throughput with a small beamwidth of antenna is more than ten times larger than that for an omnidirectional antenna. The overall analysis is verified by a simulation. The obtained results will be helpful in developing an MAC protocol for enhancing the performance of mmWave wireless personal area networks.

Coupled Trigonomotric Transmission Line and its Application (결합삼각함수 선로와 그 응용)

  • 박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.6
    • /
    • pp.14-20
    • /
    • 1975
  • Characteristics of coupled trigonometric transmission lines (CTTL) are studies based on the theory of general coupled nonuniform transmission lines. First, the 4-port transmission matrix parameters of networks and directional couplers using CTTL. The phase slrift characteristic of the all-pass networks and the magnitude characteristic of the directional couplers are studied in detail for various coupling and a high-pass small ripple directional coupler using CTTL are given and their physical realization is considered.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF