• Title/Summary/Keyword: Directional

Search Result 4,037, Processing Time 0.033 seconds

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

Novel Porous Materials Prepared by Repeated Directional Crystallization of Solvent (용매의 반복 방향성 결정화를 통해 제작된 새로운 다공성재료)

  • Kim, Hyun Jin;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • Herein, novel porous structures were fabricated from monomer solutions of dimethylsiloxane and benzene by directional crystallization in twice. First, a honeycomb-like structure was fabricated by $1^{st}$ directional crystallization of solvent. By infiltration of the solution and subsequent $2^{nd}$ directional crystallization, novel structures of different pores in the honeycomb-like structure were fabricated. The porous materials prepared by the repeated directional crystallization have higher indentation modulus and hardness than those of the samples prepared by single directional crystallization. When a higher solution concentration was used in $2^{nd}$ directional crystallization, the maximum increase (indentation modulus: 2140% increase, indentation hardness: 2330% increase) was obtained. On the other hand, porosity and contact angle were lower in the samples from $2^{nd}$ directional crystallization than those from $1^{st}$ directional crystallization. A large decreases was observed, when a relatively high concentration was used in $2^{nd}$ directional crystallization (porosity: 21% decrease, contact angle: 36% decrease).

Towards the Saturation Throughput Disparity of Flows in Directional CSMA/CA Networks: An Analytical Model

  • Fan, Jianrui;Zhao, Xinru;Wang, Wencan;Cai, Shengsuo;Zhang, Lijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1293-1316
    • /
    • 2021
  • Using directional antennas in wireless Ad hoc networks has many superiorities, including reducing interference, extending transmission range, and increasing space division multiplexing. However, directional transmission introduces two problems: deafness and directional hidden terminals problems. We observe that these problems result in saturation throughput disparity among the competing flows in directional CSMA/CA based Ad hoc networks and bring challenges for modeling the saturation throughput of the flows. In this article, we concentrate on how to model and analyze the saturation throughput disparity of different flows in directional CSMA/CA based Ad hoc networks. We first divide the collisions occurring in the transmission process into directional instantaneous collisions and directional persistent collisions. Then we propose a four-dimensional Markov chain to analyze the transmission state for a specific node. Our model has three different kinds of processes, namely back-off process, transmission process and freezing process. Each process contains a certain amount of continuous time slots which is defined as the basic time unit of the directional CSMA/CA protocols and the time length of each slot is fixed. We characterize the collision probabilities of the node by the one-step transition probability matrix in our Markov chain model. Accordingly, we can finally deduce the saturation throughput for each directional data stream and evaluate saturation throughput disparity for a given network topology. Finally, we verify the accuracy of our model by comparing the deviation of analytical results and simulation results.

Tone Dual-Channel MAC Protocol with Directional Antennas for Mobile Ad Hoc Networks

  • Jwa, Jeong-Woo
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.98-101
    • /
    • 2012
  • The directional medium access control (MAC) protocol improves the throughput of mobile ad hoc networks but has a deafness problem and requires location information for neighboring nodes. In the dual-channel directional MAC protocol [12], the use of omnidirectional packets does not require the exact location of destination node. In this letter, we propose a tone dual-channel MAC protocol with directional antennas to improve the throughput of mobile ad hoc networks. In the proposed MAC protocol, we use a directional CTS and an out-of-band directional DATA tone with a new blocking algorithm to improve the spatial reuse. We confirm the throughput performance of the proposed MAC protocol by computer simulations using the Qualnet simulator.

Localization of Mobile Robot Using Active Omni-directional Ranging System (능동 전방향 거리 측정 시스템을 이용한 이동로봇의 위치 추정)

  • Ryu, Ji-Hyung;Kim, Jin-Won;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.483-488
    • /
    • 2008
  • An active omni-directional raging system using an omni-directional vision with structured light has many advantages compared to the conventional ranging systems: robustness against external illumination noise because of the laser structured light and computational efficiency because of one shot image containing $360^{\circ}$ environment information from the omni-directional vision. The omni-directional range data represents a local distance map at a certain position in the workspace. In this paper, we propose a matching algorithm for the local distance map with the given global map database, thereby to localize a mobile robot in the global workspace. Since the global map database consists of line segments representing edges of environment object in general, the matching algorithm is based on relative position and orientation of line segments in the local map and the global map. The effectiveness of the proposed omni-directional ranging system and the matching are verified through experiments.

DIRECTIONAL FILTER BANK-BASED FINGERPRINT IMAGE ENHANCEMENT USING RIDGE CURVATURE CLASSIFICATION

  • Lee, Joon-Jae;Lee, Byung-Gook;Park, Chul-Hyun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.49-57
    • /
    • 2007
  • In fingerprints, singular regions including core or delta points have different directional characteristics from non-singular regions. Generally, the ridges of singular regions change more abruptly than those of nonsingular areas, thus in order to effectively enhance fingerprint images regardless of region, local ridge curvature information needs to be used. In this paper, we present an improved Directional Filter Bank (DFB)-based fingerprint image enhancement method that effectively takes advantage of such ridge curvature information. The proposed method first decomposes a fingerprint image into 8 directional subbands using the DFB and then classifies the image into background, low curvature, and high curvature regions using the directional energy estimates calculated from the subbands. Thereafter, the weight values for directional subband processing are determined using classification information and directional energy estimates. Finally, the enhanced image is obtained by synthesizing the processed subbands. The experimental results show that the proposed approach is effective in enhancing both singular and non-singular regions.

  • PDF

Mobile robot localization using an active omni-directional range sensor (전방향 능동거리 센서를 이용한 이동로봇의 자기위치 추정)

  • 정인수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1597-1600
    • /
    • 1997
  • Most autonomous mobile robots view things only in front of them. As a result they may collide against objects moving from the side or behind. To overcome the problem we have built an Active Omni-directional Range Sensor that can obtain omni-directional depth data by a laser conic plane and a conic mirror. Also we proposed a self-localization algorithm of mobile robot in unknown environment by fusion of Odometer and Active Omn-directional Range Sensor.

  • PDF

Multimodal Fingerprint Matching Based on Minutiae Points and Directional Features (특징점 및 방향 특징에 기반한 멀티모달 지문 매칭)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2529-2531
    • /
    • 2009
  • A simple multimodal fingerprint recognition method based on two types of feature vectors such as minutiae points and directional features is proposed, where Directional Filter Bank (DFB) is used to extract directional features. Experimental results show that the proposed method can effectively combine minutiae- and DFB-based methods and produce a better matching capability in the poor quality fingerprint image.

Image Retrieval Using Directional Features (방향성 특징을 이용한 이미지 검색)

  • Jung, Ho-Young;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.207-211
    • /
    • 2000
  • For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.

  • PDF