• Title/Summary/Keyword: Direction of rotation

Search Result 698, Processing Time 0.031 seconds

Preliminary Result from Rapid Cadence Photometric Monitoring of HBC722

  • Baek, Gi-Seon;Green, Joel D.;Pak, Soo-Jong;Lee, Jeong-Eun;Eon, Yi-Seulj;Park, Won-Kee;Choi, Chang-Su;Kang, Won-Seok;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.113.2-113.2
    • /
    • 2011
  • We observed a low-mass pre-main sequence star, HBC722 (also known as $LkH{\alpha}$ 188 G4), with Camera for QUasars in EArly uNiverse (CQUEAN) attached to 2.1 Otto Struve telescope at McDonald Observatory, USA. HBC722 is a new FU orionis-type object in the direction of NGC7000/IC5070, which produced large amplitude optical outbursts (${\delta}V$=4.7 mag over one year) for a few months and reached the peak in 2010 September. We carried out the photometric observation in SDSS r,i, and z band in 2011 April, July and August to monitor the long term decrease of its brightness. We also made continuous observation in r-band for half night in July, and whole two nights in August to investigate short term variability which could be related to the rotation of the central star or the inner circumstellar disk. In this poster, we present a preliminary result of the photometric observation for HBC722.

  • PDF

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade (고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향)

  • Rhee Dong-Ho;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

FACE MASK THERAPY IN EARLY MIXED DENTION (초기 혼합치열기에서의 Face mask의 임상적 적용)

  • Lee, Chang-Joo;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.643-648
    • /
    • 2001
  • Class III malocclusion usually becomes manifested at a very early age, most typically evidenced clinically by the appearance of either an edge-to-edge incisor relationship or an anterior crossbite. Anterior crossbite, by it-self, retards growth of maxilla, and accelerates growth of mandible. So, treatment should be started as early as the patient cooperates, removing any factors or forces that inhibit growth and development in the same physiologic maxillary displacement direction. The facial mask is effective in most developing Class III patients, because the appliance system affects virtually all areas contributing to a Class III malocclusion. Thus, the facial mask can be applied to most developing Class If cases regardless of the specific etiology. In these cases, the results were followed. Anterior crossbite was corrected by anterior movement of maxilla and downward backward rotation of mandible and simultaneously, lower facial height was increased. So, it can be concluded that the facial mask is effective in treating growing patients with a deficient maxilla.

  • PDF

A study on the capability of edge shape milling tool with the operatio parameters of equipment (장비운영요소변화에 따른 석재측면 성형공구의 성능시험 연구)

  • 선우춘
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.332-341
    • /
    • 1998
  • Conventional polishing of stone panel edges has been done by hand. While this has changed somewhat with the advent of automatic machines, it is still very much a hand finishing technology. For the development of edge shape milling tool, the primary test on characteristics of edge shape milling tool was carried out. This paper presents the results of tests focused upon the milling capability that was varied by the variables of operation parameters. Author tried to confirm the effect of six operation parameters of equipment such as rotation speed, advance speed, applied load, water flow rate and rotational direction. The result from test was described in term of shape milling capability that was defined as cutting volume of rock by unit weight of tool wear. The variance of the results could indicate the optimum level of each operating parameters. The test was also carried out to determine the abrasion resistance varied according to the abrasive flow rate. The abrasion resistance was increased with the abrasive flow rate, but over some rate it was not changed.

  • PDF

Development of Electronic Opening and Shutting Device for One-Ton Wing-Body Truck

  • Han, Jong-Soo;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.565-569
    • /
    • 2004
  • The wing-body trucks are special vehicles that are designed to provide large carrying space and to protect the freights from outside impacts and bad weather. They are constructed to the structure opening and shutting three-layered aluminum top. In the middle- and large-size(above one-ton) wing-body trucks, wing-body is opened/closed by opening and shutting device of oil pressure type. But one-ton truck is constructed that its wing-body is opened/closed in manual to use helping of stay-dampers. So, we developed an electronic opening and shutting device for one-ton wing-body trucks to improve the inconvenience of usage for manually operated wing-body. The developed device is consisted of two connected links and a dc motor combined with an worm gear. The worm gear changes the rotation axis of the dc motor to a right-angled direction and transfers the torque of dc motor to the links. The two connected links open/shut the wing-body using the torque transferred from the dc motor. When the wing-body starts to be opened, the biggest torque is required from the dc motor for opening the wing-body. And as the wing-body is opened more and more, the required torque is smaller for opening the wing-body. Thus, the structure of two connected links are designed to locate at the center of worm gear so that maximum torque of the dc motor is transferred the links at the initial time starting to open wing-body. The controller of the device with open and closed buttons also is designed to protect the device from over-opening and over shutting operations. The developed device is accomplished for many experiments using actual vehicle. Those experiments show that the device has more excellent performance than the oil pressure type.

  • PDF

Effect of Cross Rolling on the Development of Textures in Tantalum (탄탈륨 집합조직 발달에 대한 교차압연의 영향)

  • Kang, Jun-Yun;Park, Seongwon;Park, Jun Young;Park, Seong-Jun;Song, Yi-Hwa;Park, Sung-Taek;Kim, Gwang-Lyeon;Oh, Kyeong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.275-282
    • /
    • 2018
  • Two different modes of rolling were applied to control the texture development in tantalum sheet. In the conventional uni-directional rolling, the typical rolling textures of a body-centered cubic metal which was primarily composed of <110>//(rolling direction) was developed. In a cross rolling where the specimen was rotated by $90^{\circ}$ between each pass, the rotated cube components, i.e. {100}<011> were greatly reinforced. The prediction of lattice rotation by the full-constraint Taylor model showed that the high stability and the symmetry of the rotated cube components caused their strengthening in cross-rolling. The two specimens were heated to $1,100^{\circ}C$ at $9^{\circ}C/min$and held for 1 hour for annealing, then cooled to room temperature in atmosphere. In spite of the significant difference in the deformation textures, the annealing textures were very similar. They developed strong <111>//(plane normal) components with negligible intensity at the rotated cube components, which was attributed to the negligible capability of the latter components to provide effective recrystallized grains.

The Research for Using Method of GRF (Ground Reaction Force) on Rotational Movement in Arabesque (아라베스크 회전동작 시 지면반력 활용방법에 관한 연구)

  • Gwon, An-Suk;Lee, Geon-Beom
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • G. B. LEE, A. S. GWON, The Research for Using methodof GRF (Ground Reaction Force) on Rotational Movement in Arabesque. Korean Journal of Sport Biomechanics, Vol. 15, No. 2, pp.1-10, 2005. As, in relation to all movements of a human being, the movements such as mutually walking, running, rotating, and jumping are attained endlessly through the ground amid the interaction with the ground, in terms of the harmonious movement of the upper limbs and the lower limbs, related to the basic movement in ballet, the type of a movement depends on the size and direction of the force that presses down the ground (Fz, Fx, Fy) amid the interaction with the ground. Therefore, aiming to correctly and efficiently perform a rotational movement in Arabesque, this study analyzed factors of the force manifestation through GRF (Ground Reaction Force), by dividing into preparing, stepping, standing, rotating, and finishing stages (events (1) ${\sim}$ (5)), targeting the subjects of 4 elite female students who majored in ballet. 1. At the No.5 position of the preparing stage, It is necessary that support the ground with left and right foot balance, 2. As the stepping stage is the phase ranging from the event (2), in which a plie movement of bending a knee is started, to the event (3) of stretching a knee, Rebunding motion is not good, and One have a position with ankle and knee flextion condition in order to stretch strengthly in event (3) position 3. At the event (1) position, It is necessary that exert the Fz reaction force at the event (3) position. Because large stretch force help to have a toe on position easily and show a active motion 4. In order to have a stand and rotation motion smoothly, One need a muscle strength training for ankle extension, knee extension, control horizental force

MAGNETIC PROPERTIES OF INNER MAGNETOSPHERE DURING GEOMAGNETIC STORMS INFERRED FROM A TSYGANENKO MAGNETIC FIELD MODEL

  • Lee, D.Y.;Kim, K.C.;Choi, C.R.;Kim, H.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • In this paper we report some properties of inner magnetospheric structure inferred from the T01_s code, one of the latest magnetospheric models by Tsyganenko. We have constructed three average storms representing moderate, strong, and severe intensity storms using 95 actual storms. The three storms are then modelled by the T01_s code to examine differences in magnetic structure among them. We find that the magnetic structure of intense storms is strikingly different from the normal structure. First, when the storm intensity is large, the field lines anchored at dayside longitudinal sectors become warped tailward to align to the solar wind direction. This is particularly so for the field lines anchored at the longitudinal sectors from postnoon through dusk. Also while for the moderate storm the equatorial magnetic field near geosynchronous altitude is found to be weakest near midnight sector, this depression region expands into even late afternoon sector during the severe storm. Accordingly the field line curvature radius at the equator in the premidnight geosynchronous region becomes unusually small, reaching down to a value less than 500 km. We attribute this strong depression and the dawn-dusk asymmetry to the combined effect from the enhanced tail current and the westward expansion/rotation of the partial ring current.