Browse > Article
http://dx.doi.org/10.12656/jksht.2018.31.6.275

Effect of Cross Rolling on the Development of Textures in Tantalum  

Kang, Jun-Yun (Korea Institute of Materials Science)
Park, Seongwon (Korea Institute of Materials Science)
Park, Jun Young (Korea Institute of Materials Science)
Park, Seong-Jun (Korea Institute of Materials Science)
Song, Yi-Hwa (Poongsan)
Park, Sung-Taek (Poongsan)
Kim, Gwang-Lyeon (Poongsan)
Oh, Kyeong-Won (Maneuver & Firepower Technical Team, Defense Industry Technology Center)
Publication Information
Journal of the Korean Society for Heat Treatment / v.31, no.6, 2018 , pp. 275-282 More about this Journal
Abstract
Two different modes of rolling were applied to control the texture development in tantalum sheet. In the conventional uni-directional rolling, the typical rolling textures of a body-centered cubic metal which was primarily composed of <110>//(rolling direction) was developed. In a cross rolling where the specimen was rotated by $90^{\circ}$ between each pass, the rotated cube components, i.e. {100}<011> were greatly reinforced. The prediction of lattice rotation by the full-constraint Taylor model showed that the high stability and the symmetry of the rotated cube components caused their strengthening in cross-rolling. The two specimens were heated to $1,100^{\circ}C$ at $9^{\circ}C/min$and held for 1 hour for annealing, then cooled to room temperature in atmosphere. In spite of the significant difference in the deformation textures, the annealing textures were very similar. They developed strong <111>//(plane normal) components with negligible intensity at the rotated cube components, which was attributed to the negligible capability of the latter components to provide effective recrystallized grains.
Keywords
crystallographic texture; rolling; deformation; annealing; tantalum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Cardonne, P. Kumar, C. A. Michaluk, and H. D. Schwartz : Int. J. ofRefractory Metals & Hard Materials 13 (1995) 187-194.   DOI
2 L. E. Murr, H. K. Shih, and C-S. Niou : Materials Characterization 33 (1994) 65-74.   DOI
3 L. E. Murr, C-S. Niou, and C. Feng : Scr. Metall. Mater. 31 (1994) 297-302.   DOI
4 L. E. Murr, C.-S. Niou, J. C. Sanchez, H. K. Shih, L. Duplessis, S. Pappu, and L. Zernow : J. Mater. Sci. 30 (1995) 2747-2758.   DOI
5 L. E. Murr, S. Pappu, C. Kennedy, C-S. Niou, and M. A. Meyers : in ed. E. Chen, A. Crowson, E. Lavernia, W. Ebihara, P. Kumar, Tantalum, The Minerals & Materials Society, 1996, pp. 145-155.
6 S. E. Schoenfeld : Army Research Laboraty Report, ARL-TR-1560, 1997.
7 R. W. Buckman Jr. : JOM 52 (2000) 40-41.
8 R. Cohen, C. J. Della Valle, and J. J. Jacobs : Journal of the American Academy of Orthopaedic Surgeons 14 (2006) 646-655.   DOI
9 C. Deng, S.-F. Liu, X.-B. Hao, J.-L. Ji, Q. Liu, and H.-Y. Fan : Rare Metals 36 (2017) 523-526.   DOI
10 R. K. Ray, J. J. Jonas, and R. E. Hook : Int. Mater. Rev. 39 (1994) 129-172.   DOI
11 D.-I. Kim, K. H. Oh, and H.-C. Lee : Mater. Sci. Forum 408-412 (2002) 839-844.   DOI
12 J.-Y. Kang, D.-I. Kim, and H.-C. Lee: in A. Haldar, S. Suwas, D. Bhattacharjee (eds), Microstructure and Texture in Steels, Springer, London, 2009, pp. 85-101.
13 R. A. Vandermeer, and W. B. Snyder, Jr. : Metall. Trans. A 10A (1979) 1031-1044.
14 D. Raabe, K. Lucke, and G. Gottstein : Journal de Physique IV Colloque 03 (C7) (1993) 523-526.
15 H. R. Z. Sandim, J. P. Martins, A. L. Pinto, and A. F. Padilha : Mater. Sci. Eng. A 392 (2005) 209-221.   DOI
16 J. F. Held : in Proc. Mechanical Working and Steel Processing IV, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1965, p. 3.
17 T. Yonamine, N. A. Castro, and F. J. G. Landgraf : Steel Research International 76 (2005) 461-463.   DOI
18 H.-J. Shin, S. H. Hong, and D. N. Lee : Key Eng. Mater. 274-276 (2004) 11-18.   DOI
19 S. S. Dhinwal, L. S. Toth, P. D. Hodgson, and A. Haldar : Materials 11 (2018) 1327-1349   DOI
20 C. Deng, S. F. Liu, J. L. Ji, X. B. Hao, Z. Q. Zhang, and Q. Liu : Journal of Materials Processing Technology 214 (2014) 462-469.   DOI
21 A. S. Khan and S. Huang : Continuum Theory of Plasticity, John Wiley & Sons, Inc., Newyork, 1995.
22 S. P. Turner : US patent 7101447B2 (2000).
23 S. Matthies, G. W. Vinel, and K. Helming : Standard Distributions in Texture Analysis, Berlin, Akademie-Verlag, 1987.
24 V. Randle and O. Engler : Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, London, 2000.
25 G. I. Taylor : J. Inst. Metals 62 (1938) 307-324.
26 L. S. Toth, J. J. Jonas, D. Daniel, and R. K. Ray : Metall. Trans. A 21A (1990) 2985-3000.