• Title/Summary/Keyword: Direction of anisotropy

Search Result 302, Processing Time 0.03 seconds

Angular Dependence of Ferromagnetic Resonance Linewidth in Exchange Coupled CoFe/MnIr Bilayers (교환 결합력을 갖는 CoFe/MnIr 박막에서 강자성 공명 선폭의 각도 의존성 연구)

  • Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • We analyzed the angular dependence of ferromagnetic resonance linewidth in exchange coupled CoFe/MnIr bilayers. The maximum and minimum linewidth was observed in the easy and hard direction of unidirectional anisotropy by exchange coupling, respectively, and it was well agreed with the angular dependence of exchange bias field. The maximum linewidth was due to the twist of CoFe magnetization near CoFe/MnIr interface from direction of pinned MnIr spin to direction of applied magnetic field. While, minimum linewidth more higher than that of CoFe was related to rotatable anisotropy field, and explained by easy axis distribution of MnIr grains.

P Wave Velocity Anisotropy and Microcracks of the Pochon Granite Due to Cyclic Loadings (압축피로에 의한 포천화강암의 미세균열 발달과 P파속도 이방성)

  • Kim, Yeonghwa;Jang, Bo-An;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 1997
  • P wave velocities of core samples from the Pocheon granite were measured before and after applications of cyclic loading. Then. distribution of the pre-existing microcracks and microcracks developed due to the cyclic loading was investigated by analyzing P wave velocity anisotropies and microscopic observations from thin sections. Anisotropy constants were calculated with three different ways: (1) $C_A$ between the maximum and the minimum velocities, (2) $C_AI$ between velocities measured along the axial direction and the average of six velocities measured in the planes perpendicular to the loading axis (rift plane) and (3) $C_AII$ between the maximum and the minimum velocities measured in the plane perpendicular to the loading axis. Among anisotropy constants. $C_AI$ was the most effective anisotropy constant to identify the rift plane whose orientation is parallel to the pre-existing microcracks as well as the distribution of stress induced microcracks. $C_AI$ decreased after cyclic loading and the relationship between $C_AI$ and number of cycles shows comparatively coherent negative trends. indicating that stress induced microcracks are aligned perpendicular to the orientation of pre-existing microcracks and that the amounts are proportional to the number of loading cycles. The difference of anisotropy constants before and after cyclic loading was effective in delineating the level of cracks and we called it Induced Crack Index. Velocity measurements and microscopic observations show that anisotropy was caused mainly due to microcracks aligned to a particular direction.

  • PDF

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film (NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성)

  • Choi, Jong-Gu;Kwak, Tae-Joon;Lee, Sang-Suk;Sim, Jung-Taek
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

Anisotropy of the Hall Factor According to the Growth Direction in the Two-dimensional Device with Indirect Conduction Valley (간접천이대를 갖는 2차원 소자에서 성장방향에 따른 Hall 인수의 이방성 연구)

  • Kim, Jong Gu;Lee, Jae Chul;Chun, Sang Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.428-432
    • /
    • 2014
  • The Hall factor in a two-dimensional device with indirect conduction valleys is calculated for several growth on various strain conditions. In the [001] or [111] growth direction, the two-dimensional constant energy surfaces of occupied valleys are shown to be isotropically distributed. However, in the [110] growth direction, the distribution of occupied valleys on the plane is not isotropic. This fact is the reason for the anisotropic Hall factor on the sample plane.

Optical Emission Anisotropy in InP Aligned Quantum Dots

  • Shin, Y.H.;Kim, Yongmin;Song, J.D.;Choi, Subong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.288.2-288.2
    • /
    • 2014
  • InP quantum dots were grown by using the molecular beam epitaxy technique. Quantum dots are connected and composed string-like one-dimensional structure due to the strain field along [110] crystal direction. Two prominent photoluminescence transitions from normal quantum dots and string-like one-dimensional structure were observed which show strong optical anisotropy along [1-10] and [110] crystal directions. Both peaks also showed blue-shift while rotating emission polarization from [1-10] to [110] direction. Such optical transition behaviors are the consequence of the valence band mixing caused by strain field along the [110] crystal direction.

  • PDF

The Size Effect in Measuring the Fracture Toughness of Rock using Chevron Bend Specimen (암석의 파괴인성 측정에서 나타나는 CB 시험편의 치수효과에 관하여)

  • 김재동;백승규
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.251-264
    • /
    • 1992
  • In this study, the size effect in measuring the fracture toughness of rock was investigated using the ISRM Suggested Method for Fracture toughness using Chevron Bend Specimens. Total 58 specimens were prepared with 4 different diameters, 29, 42, 54, 68mm and center cut-chevron notch. In addition to this, to evaluated the effect of anisotropy of Jecheon granite, which is the sample for this study, core drilling direction was adjusted perpendicular(short transverse) and parallel(arrester) to the rift plane in the sample and the measured fracture toughness for each direction were compared. Important results obtained from this study are as follows. Level ll test condition is more adequate than l, because of low data scattering and precision and corrected fracture toughness of Jechoen granite measured and 2.2MPa{{{{ SQRT { m} }}}} for arrester direction with minimum initial crack length 0.7cm. From the relationship between core diameter and initial crack length presented in the ISRM testing method, the specimen diameter should be bigger than 47mm. The fracture toughnesses measured for arrester and short transverse directon show 10% difference. This is to the anisotropy of Jecheon granite possessing rift plane.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(I) Strength Anisotropy (평면변형률 압축시험에 의한 각종 모래의 강도.변형특성의 이방성(I) -강도 이방성-)

  • 박춘식
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.5-18
    • /
    • 1997
  • Anisotropy in strength and deformation characteristics of isotropically consolidated sande prepared by pluviating through air was studied by plane strain compression tests. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. The strains for direction of bmazimum principal stress and direction of minimum principal strews were measured continuously from $10^{-6}\; to 10^{-2}$. The following results were obtained for all sands. The behaviour at strains leas than about 0.001% was elastic and isotropic regardless of the angle $\delta\; of\; the\;\sigma$ direction relative to the bedding plane. However, the sands became gradually more anisotropic as the strain increased to the extent exceeding the elastic limit. The peak strength was noticeably anisotropic with a similar trend. Thus, the angle of internal friction $\phi\; decreased \;as\;\delta$ decreased from $90^{\circ}$, and the ratio of the smallest to largest values of was between 0.82 and 0.90. The l has a minimum at $\delta=0^{\circ}~30^{\circ}$ depending on the hypes of sand. The residual strength became isotropic again.

  • PDF

Influences of Nd-Fe-B Magnets on the Magnetic Anisotropy Direction of Permalloy Thin Films Fabricated by rf Magnetron Sputtering (Rf 마그네트론 스퍼터링으로 제조된 퍼멀로이 박막의 자기이방성 조절을 위한 NdFeB 영구자석의 영향 및 자기특성 해석)

  • Lee, Y.H.;Kim, K.H.;Kim, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • Permalloy thin films fabricated by rf magnetron sputtering showed the excellent magnetic properties, i.e., an effective permeability of over 2000 at 1$\mu\textrm{m}$ thick up to 10 MHz, a saturation magnetization of 10∼12 kG, a coercive force of 0.2∼1 Oe, resistivity (p) is 20 ${\mu}$$\Omega$cm. In order to control the magnetic anisotropy direction of the films in a wafer scale, two parallel Nd-Fe-B permenant mangnets were used to provide the magnetic field during the sputtering process. As a result, the anisotropy direction was successfully controlled when the two magnets were seperated with a distance of 70 mm. 3D simmulation of the magnteic fields around the wafer during sputtering were in accord with the above result.

Comparison of Fractional Anisotropy Values of Corticospinal Tract and Corpus Callosum between 6- and 25-Direction Diffusion Tensor Images in Normal Subjects

  • Lee, Jeong-Hyun;Lee, Sun-Young;Kim, Hyun-Jeong;Park, Choong-Gon;Lee, Deok-Hee;Lee, Ho-Kyu;Kim, Sang-Joon;Suh, Dae-Chul
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.20-20
    • /
    • 2003
  • Purpose: To investigate the difference of fractional anisotropy (FA) values between 6- and 25-direction diffusion tensor images (DTI) in normal adult brain. Materials and Methods: DTI was peformed in 28 normal subjects (15 subjects with 6-direction, 13 subjects with 25-direction) in a 1.5 T MR system. DTI was done with SE-EPI sequence with TR/TE/NEX 10000/84/1, 5mm slice thickness and b=1000 s/mm2. FA values were measured from 8 different anatomical locations which included both cerebral peduncles, both posterior limbs of the internal capsules, both corona radiata, genu and splenium of the corpus callosum. Statistical difference of FA was tested between 6-and 25-direction DTI.

  • PDF

Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media (불균질 이방성 매질에서의 탄성파 주시 토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF