본 논문은 서베일런스 네트워크에서 이동하는 객체 추적 시 영상 데이터의 전송량을 감소시키는 신경망 계산 시간의 단축 알고리즘을 제안한다. 객체 검출은 디지털화 연속된 영상으로부터 객체 존재 유무를 판단하고, 객체가 존재할 경우 영상 내 객체의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 그러나 영상 내의 객체는 위치, 크기, 빛의 방향 및 밝기, 장애물 등의 환경적 변화로 인해 객체 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 신경망을 사용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 객체 검출 방법을 제안한다. 검색 영역의 축소는 영상 내 색상 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 벡터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 실시간으로 입력되는 동영상에서 모두 실험하였으며, 색상 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 따른 검출 성공률의 차를 보였다. 실험 결과에서 보면 제안하는 방법으로써 객체의 움직임을 탐지하였을 때 기존의 방법보다 30% 정도 더 높은 인식 성능을 보여준다.
기존의 많은 장면 전환 검출 알고리즘은 점진적 장면 전환을 검출하기보다는 급격한 장면 전환 검출에 중점이 맞추어졌다. 일반적으로 점진적 장면 전환 검출에 중점을 둔 알고리즘은 많은 연산량을 필요로 한다. 또한 장면 전환 검출에 오류 요소인 플래쉬 라이트, 카메라 움직임 및 특수효과 등의 다양한 오류 요소를 고려하지 못하는 경우가 많다. 또한 기존의 많은 방법들은 히스토그램 기반의 알고리즘을 제시하였지만 좋은 성능에 비해 처리속도에서 취약하다. 본 논문에서는 저장된 동영상으로 부터 수직과 수평 블록의 시간적 슬라이스 영상과 슬라이스 영상 내 매크로 블록에 해당되는 정보를 이용한 빠르고 정확한 장면 전환 검출 알고리즘을 제안한다. 슬라이스 영상으로부터 시, 공간 상관관계의 히스토그램을 구성하고, 이를 그래프 컷 분할 알고리즘에 적용하였다. 처리속도 향상을 위해 영상 전체가 아닌 각각 영상 내 수직, 수평 방향의 중심 부분의 해당되는 위치의 블록에서만 시공간 정보를 추출하여 히스토그램을 구성하였다. 또한 카메라, 물체의 움직임 및 특수효과 변화 등을 효과적으로 검출할 수 있도록 매크로 블록의 움직임과 형태 정보를 이용하여 상당한 변별력 향상을 보였다.
최근 통신 시스템의 연구와 발전 방향은 목소리의 음성 정보와 말하는 얼굴 영상의 화상 정보를 함께 적용하므로서 음성 정보만을 제공하는 경우보다 높은 인식율을 제공한다. 따라서 본 연구는 청각장애자들의 언어 대체수단 중 하나인 구화(speechreading)에서 가장 시각적 변별력이 높은 입모양 인식을 일반 퍼스널 컴퓨터상에서 구현하고자 한다. 본 논문은 기존의 방법과 달리 말하는 영상 시퀀스에서 입모양 인식을 행하기 위해 3차원 모델을 사용하여 입의 벌어진 정도, 턱의 움직임, 입술의 돌출과 같은 3차원 특징 정보를 제공하였다. 이와 같은 특징 정보를 얻기 위해 3차원 형상 모델을 입력 동영상에 정합시키고 정합된 3차원 형상 모델에서 각 특징점의 변화량을 인식파라미터로 사용하였다. 그리고, 인식단위로 동영상을 분리하는 방법은 3차원 특징점 변화량에서 얻어지는 강도의 기울기에 의하여 이루어지고, 인식은 각각의 3차원 특징벡터를 이산 HMM 인식기의 인식 파라메타로 사용하였다. 본 논문에서는 한국어 10개 모음에 대하여 인식실험하여 비교적 높은 인식율을 얻을 수 있는 것으로 보아 본 연구에서 사용한 특징 벡터를 시간적 변별 요소로서 사용할 수 있음을 제시하였다.
본 논문에서는 계절 및 주야의 온도변화를 고려한 관측위성의 열지향오차해석을 실시한다. 관측위성은 임무수행기간 동안 다채널의 관측센서를 이용해서 지구표면의 영상을 촬영한다. 그러나 주야 및 계절별로 최대 200도의 온도환경 차이가 발생하며 이로 인해 관측센서 및 별추적기의 시선벡터가 변화되고 정해진 목표지점의 영상촬영이 어렵다. 이런 문제를 사전예측하고 대응하기 위해서 열지향오차해석을 실시한다. 우선 궤도열환경해석으로부터 도출된 성긴 온도장 정보를 상세한 구조유한요소모델에 PAT기법을 이용해 보간하여 온도변화에 따른 열변형해석을 수행하였다. PAT로 보간된 온도분포의 정확도를 검증하였으며, 열변형해석결과로부터 열지향오차를 도출하였다.
단일판접합(Single Plate Connections, 이하 SPC라 함)은 단순전단접합의 일종으로 한 장의 강판을 지지부재인 기둥이나 큰보의 웨브에 공장용접하고 보를 현장고력볼트로 접합하기 때문에 시공이 간편하고, 경제성이 있어 강구조 및 합성구조에서 널리 사용되고 있다. 일반형 단일판접합부의 고력볼트는 수직 1열로 2~12개가 사용되며, 단순보의 단부에서 필요한 회전유연성을 확보하기 위하여 고력볼트직경과 구멍형태에 따라 판의 두께를 제한하여 설계한다. SPC에서 편심전단을 받는 고력볼트군의 강도를 산정할 때, 고력볼트의 전단강도나, 판의 지압강도 또는 찢김(Tear-out)강도 중 최소값에 의해 설계강도가 결정되는데, 만약 연단고력볼트의 수직연단거리에 의한 찢김에 의해 고력볼트군의 강도가 결정될 때에는 매우 보수적으로 설계된다. 따라서 본 연구에서는 고력볼트의 반력각도에 의한 실제 경사연단거리를 구하고 이를 근거로 설계강도를 산정하는 설계절차를 제안하였다. 편심전단을 받는 '약-판/강-고력고력볼트' 설계모델의 일반형 단일판접합부 고력볼트군 해석을 위해 탄성벡터법(EVM)과 소성법인 수간회전중심법(ICM)을 이용해 그 효과를 비교하였다. 또한 실용적이고 편리한 설계를 위하여 경사연단거리를 고려한 일반형 단일판접합부의 설계도표를 제안한다.
A strain producing strongly fibrinolytic enzyme was isolated from soil and was identified to be Bacillus subtilis by biochemical and physiological characterization. The optimal culture conditions for the production of fibrinolytic enzyme was determined to be 1.0% tryptone, 1.5% soluble starch, 0.5% Peptone, 0.5% NaCl, $(NH_{4})_{3}PO_4.3H_{2}O, and MgSO_{4}.7H_{2}O.$ Initial pH and temperature were pH 8.0 and $30^{\circ}C$ , respectively, The highest enzyme production was observed at 30 hours of cultivation at $30^{\circ}C$ The fibrinolytic enzyme was purified to homogeneity by DEAE Sephadex A-50 ion exchange column chromatography, 70% ammonium sulfate precipitation, Sephadex G-200 and G-75 gel filtration column chromatography. The molecular weight of the purified enzyme was 28,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A gene encoding the fibrinolytic enzyme was cloned into a plasmid vector pBluescript, transforming E.coli XL-1 Blue. The clone was able to degrade fibrin, This indicated that the gene could encode a fibrinolytic enzyme. The nucleotide sequence of the 2.7 kb insert was determined in both direction. One open reading frame composed of 1023 nucleotides was found to be a potential protein coding region. There was the putative Shine-Dalgano sequence and TATA box upstream of the open reading frame. The homology search data in the genome database showed that both the 2.7 kb insert and 1 kb open reading frame carried no significance in the nucleotide sequence of known fibrinolytic enzyme from Bacillus serovars. The recombinant cell harboring the novel gene involved in fibrinolysis was subjected to protein purification. The molecular mass of the purified fibrinolytic enzyme was determined to be 31864 Dalton, which was highly in accordance with the molecular mass(33 kDa) of the fibrinolytic gene deduced from the insert. The fibrinolytic enzyme was Purified 50.5 folds to homogeneity in overall yield of 10.7% by DEAE Sephadex A-50 ion exchange, 85% ammonium sulfate precipitation, Sephadex G-50, Superdex 75 HR FPLC gel filtration. In conclusion, a novel fibrinolytic gene from Bacillus subtilis was identified and characterized by cloning a genomic library of Bacillus subtilis into pBleuscript. For the soybean fermented by this strain, it is found that there increased assistant protein about 20% compared to the soybean not fermented and increased about 30% according to amino acid analysis and, in particular, essential amino acid increased about 40%. When keeping this fermented soybean powder at room temperature for about 70days, it showed very high stability maintaining almost perfect activity and, therefore, it gave us great suggestion its possibility of development as a new functional food.
Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.
한국 연근해에서 조업하고 있는 어선을 효율적으로 관리할 수 있는 어선관제시스템의 구축을 위한 기초 연구로서 제주도 성산포항을 거점으로 하여 조업중인 대형선망어선단의 어로과정의 ARPA 영상을 디지털신호로 변환시켜 분석하고 VTMS를 이용하여 모의실험을 행한 결과를 요약하면 다음과 같다. (1) 대형선망어선단의 어로과정을 분석한 결과 투망소요시간은 16분, 양망소요시간은 35분이었고, 앞잡이 배가 끌어 주는 로프의 길이는 200m, 투망시 선회경은 340.8m, 선회속도는 약 6kts로써 조업 과정을 명확하게 파악할 수 있었다. (2) 실선실험에서 구한 투$.$양망과정에 유향$.$유속을 NE, 2kts와 SW, 2kts로 가상하여 시뮬레이션한 결과, 각각 SW, NE 방향으로 편위됨을 알 수가 있었다. 이와 같이 어장환경정보 또는 어업 정보나 조선정보를 관제시스템에 가미함으로써 실제조업과 같은 상황을 예측할 수 있었으며, 클로즈업시킨 화면을 통해 투 양망중 예상되는 상황과 문제점을 검토할 수 있었다. (3) 시뮬레이션에서 사용한 VTMS의 레이더 관제범위는 16mile이었고, 관제범위를 넘었더라도 타관제선으로의 이관이 가능하였다. 또한, 관제선과 집단선단들과의 거리와 방위를 측정하고 분석하면 관제선의 위치선정이 용이함을 알 수 있었다. (4) 조업선들이 어황정보와 안전항행정보를 제공받아 안전하고 효율적인 조업을 행할 수 있는 어선관제 시스템(FVTMS)의 예측모델을 제시하였다. 이와 같이 VTMS용 관제시스템을 이용하여 선단조업어선의 어로과정에 대한 시뮬레이션 한 결과, 근접조업에 따른 잦은 경보와 추적 상실 등 몇가지 기능상의 문제점이 발견되었으므로 어선관제시스템(FVTMS)에 적합한 프로그램이 시급히 개발되어야 할 것으로 사료된다. 대한 추종 성능이 현용 어로시스템에 비하여 매우 우수하기 때문에 해상에서 어로작업시 과부하에 대한 어구의 손상 방지 및 조업 효율의 향상에 크게 기여할 것으로 판단된다.Exp.2), 실험 수온 27$^{\circ}C$에서, Exp. 1에서와 동일한 3개의 수리학적 부하량에서 산소 전달률을 측정한 결과, Exp. 1에서와 같이 수리학적 부하량과 매질의 깊이의 증가에 따라 산소 전달률이 증가하였으며, 매질의 깊이가 가장 깊은 36 cm에 대해, 수리학적 부하량이 2 $m^3$/$m^2$/min 일때, 2 kg 02 kg $O_2$/kW-hr의 가장 높은 표준에어레이션효율을 나타내었다. 위의 두 실험 결과에 따라 packed column 에어레이터에서 발포스티로폼 입자를 산소전달 매질로 이용하여 산소 전달률을 증가시킬 수 있다는 것을 확인할 수 있었다.i, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks. electron acceptor triggers sensory transduction processes in B. japonicum.t the Christian rejection
본 연구는 10만 개 이상의 움직이는 파티클 각각이 발광원으로서 존재할 때 라이팅을 위한 실시간 렌더링 알고리즘을 제안한다. 각 라이트의 영향 범위를 동적으로 파악하기 위해 2개의 3D 텍스처를 사용하며 첫 번째 텍스처는 라이트 색상 두 번째 텍스처는 라이트 방향 정보를 가진다. 각 프레임마다 두 단계를 거친다. 첫 단계는 Compute shader 기반으로 3D 텍스처 초기화 및 렌더링에 필요한 파티클 정보를 갱신하는 단계이다. 이때 파티클 위치를 3D 텍스처의 샘플링 좌표로 변환 후 이 좌표를 기반으로 첫 번째 3D 텍스처엔 해당 복셀에 대해 영향을 미치는 파티클 라이트들의 색상 총합을, 그리고 두 번째 3D 텍스처에 해당 복셀에서 파티클 라이트들로 향하는 방향벡터들의 총합을 갱신한다. 두 번째 단계는 일반 렌더링 파이프라인을 기반으로 동작한다. 먼저 렌더링 될 폴리곤 위치를 기반으로 첫 번째 단계에서 갱신된 3D 텍스처의 정확한 샘플링 좌표를 계산한다. 샘플링 좌표는 3D 텍스쳐의 크기와 게임 월드의 크기가 1:1로 대응하므로 픽셀의 월드좌표를 그대로 샘플링 좌표로 사용한다. 샘플링한 픽셀의 색상과 라이트의 방향벡터를 기반으로 라이팅 처리를 수행한다. 3D 텍스처가 실제 게임 월드와 1:1로 대응하며 최소 단위를 1m로 가정하는데 1m보다 작은 영역의 경우 해상도 제한에 의한 계단 현상 등의 문제가 발생한다. 이러한 문제를 개선하기 위한 텍스처 샘플링 시 보간 및 슈퍼 샘플링을 수행한다. 한 프레임을 렌더링하는데 소요된 시간을 측정한 결과 파티클이 라이트의 개수가 262144개일 때 Forward Lighting 파이프라인에서 146ms, deferred Lighting 파이프라인에서 46ms 가 소요되었으며, 파티클 라이트의 개수가 1024576개일 때 Forward Lighting 파이프라인에서 214ms, Deferred Lighting 파이프라인에서 104ms 가 소요되었다.
위성영상으로부터 자동화된 선구조 추출 알고리즘은 지형적 특징에 따라 다양한 방법으로 개발되어 왔다. 국내 지형은 주로 산악지형에 가깝지만 충적층 지대가 함께 발달되어 있으며 이와 같은 충적층은 종종 단층과 같은 주요 선구조를 이루고 있다. 그러나 기존의 방법들은 이와 같은 복합적인 지형에 대해 적용하는데 여러 가지 문제점들이 있다 이에 따라 본 연구에서는 이러한 지형적 특징을 나타내는 지역에 적용 가능한 새로운 알고리즘을 개발하였다. 위성영상으로부터 선구조 요소와 비 선구조 요소로 구분되는 이진영상을 생성하기 위해 DSTA(Dynamic Segment Tracing Algorithm)를 개발하였다. DSTA는 선구조 추출시 발생하는 태양방위각에 따른 선택적 증감효과를 제거하고 동적 소창문(dynamic sub window)의 사용에 의해 명암차가 낮은 지역에서의 잡음(noise)을 상당히 제거하였다. 또한, 충적층 처리 루틴은 충적층 지역에서 나타나는 잡음 대부분을 제거하여 효과적으로 선구조를 추출할 수 있었다. 이진영상으로부터 선구조의 양끝점을 결정하기 위해 일반 영상자료 처리에 이용되고 있는 Hierarchical Hough 변환 또는 Generalized Hough 변환을 지질학적 적용에 적합하도록 결합연산 과정을 결합한 ALEHHT(Automatic Lineament Extraction by Hierarchical Hough Transform) 및 ALEGHT (Automatic Lineament Extraction by Generalized Hough Transform) 알고리즘을 개발하였으며, 이를 이용하여 지질학적으로 이용 가능한 선구조를 구하였다. 본 연구에서 제안된 결합연산 과정은 두선 사이의 사이각($\delta$$\beta$), 수직거리(d$_{ij}$) 및 중점거리(dn)를 이용하였다. 개발된 알고리즘을 Landsat TM 자료에 적용하여 지질학적 선구조를 추출한 결과, 산악지역 및 충적층 지대에 발달한 선구조 모두 잘 추출되었으며 태양방위각에 평행한 서북서방향의 선구조 역시 잘 드러나고 있어 만족할 만한 결과를 얻을 수 있었다. 그러나 효과적으로 알고리즘을 사용하기 위해서는 적절한 입력변수의 사용이 필수적이며, 특히 ALEGHT의 입력변수 중 영상 정량화 간격(drop)에 의한 영향은 차후의 연구에서 수행, 보완되어야 할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.