• Title/Summary/Keyword: Direction Estimation

Search Result 975, Processing Time 0.026 seconds

Development of Human Following Method of Mobile Robot Using TRT Pose (TRT Pose를 이용한 모바일 로봇의 사람 추종 기법)

  • Choi, Jun-Hyeon;Joo, Kyeong-Jin;Yun, Sang-Seok;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.

Concave penalized linear discriminant analysis on high dimensions

  • Sunghoon Kwon;Hyebin Kim;Dongha Kim;Sangin Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • The sparse linear discriminant analysis can be incorporated into the penalized linear regression framework, but most studies have been limited to specific convex penalties, including the least absolute selection and shrinkage operator and its variants. Within this framework, concave penalties can serve as natural counterparts of the convex penalties. Implementing the concave penalized direction vector of discrimination appears to be straightforward, but developing its theoretical properties remains challenging. In this paper, we explore a class of concave penalties that covers the smoothly clipped absolute deviation and minimax concave penalties as examples. We prove that employing concave penalties guarantees an oracle property uniformly within this penalty class, even for high-dimensional samples. Here, the oracle property implies that an ideal direction vector of discrimination can be exactly recovered through concave penalized least squares estimation. Numerical studies confirm that the theoretical results hold with finite samples.

DOA estimation of signals using non-parametric algorithm (Non-parametric 알고리즘을 이용한 신호의 DOA 추정)

  • 이광식;문성익;양두영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.121-124
    • /
    • 2003
  • In this paper, the non-parametric algorithm to estimate DOA(Direction Of Arrival) of signals is proposed and compared with the multidimensional MUSIC algorithm. This non-parametric algorithm with regularizing sparsity constraints achieves super-resolution and noise suppression, effectively. Also, this algorithm offers the increased resolution and significantly reduced sidelobes.

  • PDF

Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals

  • Sha, Zhi-Chao;Liu, Zhang-Meng;Huang, Zhi-Tao;Zhou, Yi-Yu
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.748-756
    • /
    • 2013
  • This paper addresses the problem of online hop timing detection and frequency estimation of multiple frequency-hopping (FH) signals with antenna arrays. The problem is deemed as a dynamic one, as no information about the hop timing, pattern, or rate is known in advance, and the hop rate may change during the observation time. The technique of particle filtering is introduced to solve this dynamic problem, and real-time frequency and direction of arrival estimates of the FH signals can be obtained directly, while the hop timing is detected online according to the temporal autoregressive moving average process. The problem of network sorting is also addressed in this paper. Numerical examples are carried out to show the performance of the proposed method.

Fast Time Difference of Arrival Estimation for Sound Source Localization using Partial Cross Correlation

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.105-114
    • /
    • 2015
  • This paper presents a fast Time Difference of Arrival (TDOA) estimation for sound source localization. TDOA is the time difference between the arrival times of a signal at two sensors. We propose a partial cross correlation method to increase the speed of TDOA estimation for sound source localization. We do this by predicting which part of the cross correlation function contains the required TDOA value with the help of the signal energies, and then we compute the cross correlation function in that direction only. Experiments show approximately 50% reduction in the cross correlation computation time thereby increasing the speed of TDOA computation. This makes it very relevant for real world surveillance.

Non-Destructive Evaluation of Separation and Void Defect of a Pneumatic Tire by Speckle Shearing Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Hyun-Chul;Ko, Na-Kyong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1493-1499
    • /
    • 2004
  • This paper describes the speckle shearing interferometry, a non-destructive optical method, for quantitative estimation of void defect and monitoring separation defect inside of a pneumatic tire. Previous shearing interferometry has not supplied quantitative result of inside defect, due to effective factors. In the study, factors related to the details of an inside defect are classified and optimized with pipeline simulator. The size and the shape of defect can be estimated accurately to find a critical point and also is closely related with shearing direction. The technique is applied for quantitative estimation of defects inside of a pneumatic tire. The actual traveling tire is monitored to reveal the cause of separation and the starting points. And also unknown void defects on tread are inspected and the size and shape of defects are estimated which has good agreement with the result of visual inspection.

Estimation of Atmospheric Dispersion Coefficients in A Coastal Area with Complex Topography (복잡한 지형의 임해지역에서 대기 분산계수의 평가)

  • 박옥현;천성남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.411-420
    • /
    • 1998
  • To estimate the dispersion coefficients in a coastal area with complex topography, several schemes using empirical equations expressed with and in lateral and vertical directions, respectively have been examined. Estimation results using these equations and meteorological data obtained from SODAR system were compared' with previously measured dispersion coefficients in other coastal areas. Validations of estimation results have been performed by comparing the measured concentrations with predicted ones empolying in Boryung coastal area. Important conclusions were drawn as follows; (1) Variations of lateral and vertical wind direction revealed different height dependency in upper and lower mixed boundary layer. (2) Because of turbulent constraint effect by large water body in a coastal region, the lateral and the vertical dispersion coefficients were smaller than those of P-G system. (3) As a result of examining the performance measure of these schemes through checking of coincidence between measured and predicted concentrations, vertical dispersion coefficients were smaller than those of P-G system, and the Cramer scheme was found to be more appropriate rather than others in the coastal area surrounding Boryung power plant.

  • PDF