• Title/Summary/Keyword: Direction Cosine

Search Result 61, Processing Time 0.021 seconds

Polarity Verification of Direction Cosine Matrix of Gyro Sensor Using The Earth Rotational Rate (지구 회전 각속도를 이용한 자이로센서의 방향코사인행렬 극성검증)

  • Oh, Shi-Hwan;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • A Direction Cosine Matrix (DCM) of each satellites sensor/actuator which contains an directional information of sensor/actuator is implemented in the on-board flight software. In order to verify the polarity of direction cosine matrix, it is mostly used that an actual sensor/actuator output is compared with the expected output value which responses to the pre-defined external stimulus to the sensor/actuator. For the gyro sensors, the Earth rotational rate can be used as an external input for the polarity verification of DCM, without using an artificial stimulus. In this study, the polarity of gyro DCM is checked and verified using the several test data which have been acquired during the different system level test phases. Finally the polarity of DCM was successfully verified using the Earth rotational rate.

A Study on the Errors at the Measurement of Sound Power (음향파워 측정 시 오차에 대한 고찰)

  • Na, Hae-Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.917-924
    • /
    • 2012
  • Noise power of large machineries, such as textile looms, winders, and twisting machines, is often measured in a reverberant space because they cannot be installed and operated in an anechoic chamber due to their size, weight, and operating conditions. Factors affecting the measurement error of an in-situ noise power measurement include the nonuniform reverberation time and the direction of sound intensity vector which is usually regarded as normal to the measurement surface. In this study errors due to these factors are estimated with the aid of numerical simulation based on the ray-tracing technique. The averaging of reverberation times measured at several points on the measurement surface is suggested to reduce the errors from nonuniform absorption. Also the direction cosine of each surface element is taken into account, which as a whole is represented as a solid angle of the measurement surface.

Knee-driven many-objective sine-cosine algorithm

  • Hongxia, Zhao;Yongjie, Wang;Maolin, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.335-352
    • /
    • 2023
  • When solving multi-objective optimization problems, the blindness of the evolution direction of the population gradually emerges with the increase in the number of objectives, and there are also problems of convergence and diversity that are difficult to balance. The many- objective optimization problem makes some classic multi-objective optimization algorithms face challenges due to the huge objective space. The sine cosine algorithm is a new type of natural simulation optimization algorithm, which uses the sine and cosine mathematical model to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization strategy is used to generate the initial population, in order to ensure that the population is evenly distributed in the decision space. Secondly, special points in the population, such as nadir point and knee points, are adopted to increase selection pressure and guide population evolution. In the process of environmental selection, the diversity of the population is promoted through diversity criteria. Through the above strategies, the balance of population convergence and diversity is achieved. Experimental research on the WFG series of benchmark problems shows that the MaSCA-KD algorithm has a certain degree of competitiveness compared with the existing algorithms. The algorithm has good performance and can be used as an alternative tool for many-objective optimization problems.

A Strap-Down Inertial Measuring Unit for Motion Measurement of an AUV (AUV의 운동계측을 위한 스트랩-다운형 관성계측장치(IMU)의 개발)

  • 이판묵;전봉환;이종식;오준호;김도현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.95-105
    • /
    • 1997
  • This paper presents a Inertial Measuring Unit(IMU) for motion measurement of an AUV. The IMU is composed of three parts: inertial sensors with three servo accelerometers and three rate gyros, an analog/digital interface board, and a signal processing board with TMS320C31 DSP processor. The IMU is a class of strap-down inwetial navigation system does not applicable directly to the navigation system in consequence of the AUV and integrated sensors for an integrated navigation system of the AUV. Fast calculstion of direction cosine matrix for the coordinate transformation body to reference is obtained through the DSP processor. A switching algotrithm is used to lessen the low frequency drift effect of the gyros in the vertical plane with use of low pass filtering of the signal of the accelerometers.

  • PDF

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

Generation of Epipolar Image from Drone Image Using Direction Cosine (방향코사인을 이용한 드론영상의 에피폴라 영상제작)

  • Kim, Eui Myoung;Choi, Han Seung;Hong, Song Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.271-277
    • /
    • 2018
  • Generating an epipolar image which is removed a y-parallax from an original image is an essential technique for creating a 3D stereoscopic model or producing a map. In epipolar image production, there is a method of generating epipolar images by estimating the relative orientation parameters after matching the extracted distinct points in two images and a method of generating epipolar images by using the baseline and rotation angles of the two images after determining the exterior orientation parameters In this study, it was proposed a methodology to generate epipolar images using direction cosine in the exterior orientation parameters of the input images, and a method to use the transformation matrix for easy calculation when converting from the original image to the epipolar image. The applicability of the proposed methodology was evaluated by using images taken from the fixed wing and rotary wing drones. As a result, it was found that epipolar images were generated regardless of the type of drones.

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

The proposition of cosine net confidence in association rule mining (연관 규칙 마이닝에서의 코사인 순수 신뢰도의 제안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • The development of big data technology was to more accurately predict diversified contemporary society and to more efficiently operate it, and to enable impossible technique in the past. This technology can be utilized in various fields such as the social science, economics, politics, cultural sector, and science technology at the national level. It is a prerequisite to find valuable information by data mining techniques in order to analyze big data. Data mining techniques associated with big data involve text mining, opinion mining, cluster analysis, association rule mining, and so on. The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between each set of items based on the association thresholds such as support, confidence, lift, similarity measures, etc.This paper proposed cosine net confidence as association thresholds, and checked the conditions of interestingness measure proposed by Piatetsky-Shapiro, and examined various characteristics. The comparative studies with basic confidence and cosine similarity, and cosine net confidence were shown by numerical example. The results showed that cosine net confidence are better than basic confidence and cosine similarity because of the relevant direction.

Efficient Sound Source Localization System Using Angle Division (영역 분할을 이용한 효율적인 음원 위치 추정 시스템)

  • Kim, Yong-Eun;Cho, Su-Hyun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Sound source localization systems in service robot applications estimate the direction of a human voice. Time delay information obtained from a few separate microphones is widely used for the estimation of the sound direction. Correlation is computed in order to calculate the time delay between two signals. Inverse cosine is used when the position of the maximum correlation value is converted to an angle. Because of nonlinear characteristic of inverse cosine, the accuracy of the computed angle is varied depending on the position of the specific sound source. In this paper, we propose an efficient sound source localization system using angle division. By the proposed approach, the region from $0^{\circ}$ to $180^{\circ}$ is divided into three regions and we consider only one of the three regions. Thus considerable amount of computation time is saved. Also, the accuracy of the computed angle is improved since the selected region corresponds to the linear part of the inverse cosine function. By simulations, it is shown that the error of the proposed algorithm is only 31% of that of the conventional a roach.