• Title/Summary/Keyword: Direct strength method

Search Result 422, Processing Time 0.032 seconds

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Evaluation of interface shear strength between geosynthetics using three kinds of testing methods (다양한 시험법에 의한 토목섬유 사이의 접촉 전단 강도 평가)

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.356-363
    • /
    • 2004
  • In this research, the shear behavior of four different interfaces consisting of 4 types of geosynthetics was examined, and both static and dynamic tests for the geosynthetic interface were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board tests were compared with those calculated from large direct shear tests. The comparison results indicated that direct shear tests are likely to overestimate the shear strength in low normal stress range where direct shear tests were not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table tests, it was found that the friction angle might be different depending on the test method and normal stresses applied in this research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field.

  • PDF

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

Direct Inelastic Slab Design (직접비탄성 슬래브 설계법의 개발)

  • Jung Won-Hee;Park Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

The Development of the Direct Strength Method for Welded Steel Members (용접형강의 직접강도법 개발에 관한 연구 고찰)

  • Ryu, Seung Wan;Park, Sung Woong;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.231-241
    • /
    • 2015
  • The direct strength method (DSM) has been adopted by the NAS (2004) and AS/NZS 4600 (2005) for the design of cold-formed steel members. The method can be successfully applied to the design of welded steel members. This paper reviews the development of the DSM for welded steel structural members. The design strength formulae for welded section columns and beams for the DSM are based on the test results performed on welded H-section, C-section, circular and rectangular hollow section columns, plate girders and stiffened plates. The comparison between the design strength of welded sections predicted by the DSM and that estimated by existing specifications is also provided. The comparison verifies that the DSM can properly predict the compressive, flexural and shear strength of welded section columns and beams with the interaction between local and overall buckling.

A Study on Shear Strength under Constant Normal Load Conditions by Using 3DEC (3DEC을 이용한 일정수직하중 조건에서의 전단강도에 관한 연구)

  • Noh, Young-Mok;Mun, Hong-Ju;Kim, Ki-Ho;Jang, Won-Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • Direct shear tests have been initiated to understand the characteristics of joints which crucially affect the stability of rock mass. In this research, numerical approach in direct shear tests has been initiated using 3DEC on the basis of 3D distinct element method. Normal loads were altered in four different levels on artificial joint tests depending on the sawtooth angle and strengths on constant normal stress conditions, measuring the peak shear strength according to the direct shear tests under laboratory condition. Also results obtained from mechanical properties through laboratory test were used to perform numerical modeling, and shear strength obtained from the modeling was used to compare with laboratory direct shear test. As a result numerical analysis from distinct element method can simulate well on the shear behavior of rockmass.

Study on pre-bonding according with HF pre-treatment conditions in Si wafer direct bonding (실리콘기판 직접접합에 있어서 HF 전처리 조건에 따른 초기접합에 관한 연구)

  • 강경두;박진성;정수태;주병권;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.370-373
    • /
    • 1999
  • Si direct bonding (SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on- pre treatment conditions in Si wafer direct bonding, The paper resents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, applied pressure and annealing temperature(200~ 100$0^{\circ}C$) after pre-bonding. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively, Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding(Min 2.4kgf/$\textrm{cm}^2$~ Max : 14.kgf/$\textrm{cm}^2$)

  • PDF

A Study on Si-wafer direct bonding for high pre-bonding strength (큰 초기접합력을 갖는 Si기판 직접접합에 관한 연구)

  • 정연식;김재민;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.447-450
    • /
    • 2001
  • Abstract-Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively. Components existed in the interlayer were analysed by using FT-lR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 2.4kgf/cm$^2$∼Max : 14.9kgf/cm$^2$).

  • PDF

Direct Bonding of 3C-SiC Wafer for MEMS in Hash Environments (극한 환경 MEMS용 3C-SiC기판의 직접접합)

  • Chung, Yun-Sik;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2020-2022
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS fileds because of its application possibility in harsh environements. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The PECVD oxide was characterized by XPS and AFM, respectively. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$cm^2{\sim}$ Max : 15.5 kgf/$cm^2$).

  • PDF