• 제목/요약/키워드: Direct strength method

검색결과 424건 처리시간 0.036초

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

다양한 시험법에 의한 토목섬유 사이의 접촉 전단 강도 평가 (Evaluation of interface shear strength between geosynthetics using three kinds of testing methods)

  • 서민우;박준범;박인준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.356-363
    • /
    • 2004
  • In this research, the shear behavior of four different interfaces consisting of 4 types of geosynthetics was examined, and both static and dynamic tests for the geosynthetic interface were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board tests were compared with those calculated from large direct shear tests. The comparison results indicated that direct shear tests are likely to overestimate the shear strength in low normal stress range where direct shear tests were not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table tests, it was found that the friction angle might be different depending on the test method and normal stresses applied in this research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field.

  • PDF

마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가 (Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration)

  • 이현근;김도경
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

직접비탄성 슬래브 설계법의 개발 (Direct Inelastic Slab Design)

  • 정원희;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF

국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도 (The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling)

  • 박호상;서상정;권영봉
    • 한국강구조학회 논문집
    • /
    • 제22권3호
    • /
    • pp.219-228
    • /
    • 2010
  • 본 논문에는 압축력을 받는 국부좌굴, 뒤틀림좌굴 및 두 좌굴의 혼합좌굴이 발생하는 종방향 보강재가 부착된 강판의 거동 및 극한 강도에 대한 실험적인 연구를 서술하였다. 압축력을 받는 보강판의 경우 서브패널의 폭-두께비와 보강재의 휨강성에 따라서 국부좌굴, 뒤틀림좌굴 또는 두 좌굴의 혼합형태의 좌굴이 발생하게 되고, 상당한 크기의 후좌굴강도가 발현되어 보강판의 극한강도를 지배하게 된다. 보강재의 휨강성과 보강재로 구분된 서브패널의 폭-두께비가 다른 두께 4.0mm, 공칭항복강도 235MP인 SM400 강판으로 제작된 보강판의 중심압축실험을 수행하고 유한요소해석결과와 비교하여 검증하였다. 실험 결과에 근거하여 보강판의 극한강도를 예측할 수 있는 직접강도법을 적용한 설계압축강도식을 제안하였다. 제안된 직접강도법은 뒤틀림좌굴 또는 국부좌굴과 뒤틀림좌굴이 혼합하여 발생하는 종방향 보강재로 보강된 강판의 극한강도를 적절하게 예측할 수 있는 것으로 판단되었다.

용접형강의 직접강도법 개발에 관한 연구 고찰 (The Development of the Direct Strength Method for Welded Steel Members)

  • 류승완;박성웅;권영봉
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.231-241
    • /
    • 2015
  • 직접강도법은 NAS(2004)와 AS/NZS 4600(2005)에 의해서 냉간성형강재의 설계에 처음 채택되었다. 이 설계법은 용접형강 부재에도 효과적으로 적용이 가능하다고 판단된다. 본 논문에서는 최근 수행된 용접형강 부재의 직접강도법 개발에 대해서 살펴보고자 한다. 용접형강 압축 및 휨부재의 설계강도식은 H, C, RHS, CHS 형강, 플레이트거더 및 보강판 단면의 실험 결과에 근거하여 개발 되었다. 직접강도법과 현행 설계기준에 의해 예측된 강도의 비교 결과를 통하여 직접강도법을 적용하여 좌굴혼합이 발생하는 용접형강 기둥 및 보 부재의 압축, 휨 및 전단강도를 합리적으로 산정할 수 있는 것을 입증하였다.

3DEC을 이용한 일정수직하중 조건에서의 전단강도에 관한 연구 (A Study on Shear Strength under Constant Normal Load Conditions by Using 3DEC)

  • 노영목;문홍주;김기호;장원일
    • 터널과지하공간
    • /
    • 제24권1호
    • /
    • pp.46-54
    • /
    • 2014
  • 암반 구조물의 안정성에 결정적인 영향을 미치는 절리의 특성을 파악하기 위해서는 일반적으로 직접전단시험을 통한 연구가 수행되고 있으나, 본 연구에서는 3차원 개별요소법에 근거한 3DEC을 사용하여 직접전단시험을 수치해석적으로 수행하였다. 톱니각과 강도가 상이한 인공 절리시험편에 대해 수직하중을 4단계로 변화시켜가며 일정수직하중 조건에서 실험실 직접전단시험으로 최대전단강도를 측정하였다. 그리고 실내시험을 통해 얻은 시험편의 역학적 물성으로 수치해석 모델링을 수행하였고, 획득한 전단강도를 실험실 직접전단시험으로 수행한 전단강도와 비교 분석하였다. 그 결과 개별요소법에 의한 수치해석은 암반의 전단거동을 잘 모사할 수 있을 것으로 사료된다.

실리콘기판 직접접합에 있어서 HF 전처리 조건에 따른 초기접합에 관한 연구 (Study on pre-bonding according with HF pre-treatment conditions in Si wafer direct bonding)

  • 강경두;박진성;정수태;주병권;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 1999
  • Si direct bonding (SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on- pre treatment conditions in Si wafer direct bonding, The paper resents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, applied pressure and annealing temperature(200~ 100$0^{\circ}C$) after pre-bonding. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively, Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding(Min 2.4kgf/$\textrm{cm}^2$~ Max : 14.kgf/$\textrm{cm}^2$)

  • PDF

큰 초기접합력을 갖는 Si기판 직접접합에 관한 연구 (A Study on Si-wafer direct bonding for high pre-bonding strength)

  • 정연식;김재민;류지구;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 2001
  • Abstract-Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively. Components existed in the interlayer were analysed by using FT-lR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 2.4kgf/cm$^2$∼Max : 14.9kgf/cm$^2$).

  • PDF

극한 환경 MEMS용 3C-SiC기판의 직접접합 (Direct Bonding of 3C-SiC Wafer for MEMS in Hash Environments)

  • 정연식;이종춘;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.2020-2022
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS fileds because of its application possibility in harsh environements. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The PECVD oxide was characterized by XPS and AFM, respectively. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$cm^2{\sim}$ Max : 15.5 kgf/$cm^2$).

  • PDF