• Title/Summary/Keyword: Direct strength method

Search Result 424, Processing Time 0.026 seconds

Evaluation of ground characteristics near underground rainfall storage facilities using shear wave velocity (전단파 속도를 이용한 지하 저류조 주변 지반특성 평가)

  • Jo, Seon-Ah;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.225-236
    • /
    • 2014
  • Shear wave velocity was used to estimate the geotechnical characteristics (void ratio and shear strength) of ground near an underground rainfall storage facility. An oedometer cell was utilized to measure the shear wave velocity and the displacement of specimens. Shear strengths were obtained by direct shear tests. The relationships along the shear wave velocity, void ratio, and shear strength were verified and used to infer the shear strength profile with the depth. In addition, changes in shear strength due to the construction of the underground rainfall storage system were estimated using the suggested method. The results show that the in-situ shear strength deduced from the shear wave velocity-void ratio-shear strength relationship is in good agreement with that obtained from an in-situ investigation (SPT).

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

The evaluation of fracture characteristics and the analysis of stress distribution of ferromagnetic materials by Barkhausen noise method (자기적 비파괴 방법으로서의 Barkhausen Noise를 이용한 강자성체의 파괴인성 및 응력분포해석)

  • Kim, Dong-Won;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1864-1866
    • /
    • 1999
  • The magnetic nondestructive test can be applied to evaluate the magnetic material characteristics and the fracture properties through the internal defects of SA-508 used in the pressure vessels of the nuclear power plants as the direct and accurate in-situ testing methods. The fracture toughness, yield strength and the stress distribution around the defects in the surface and sub-surface of magnetic materials can be directly estimated by Bark-hausen noise(BN) methods as NDT. The testing process of SA-508 by Barkhausen noise method was advanced by controlling the austenizing peak temperature and the time of maintenance at a constant austenizing peak temperature, therefore causing the variation of fracture toughness. Through above process. we can evaluate the variations of effective grain size and the correlation of effective grain size and FATT at each situation. And the stress distribution around the defects can be quantified nondestructively through Barkhausen method.

  • PDF

The Response Characteristics of Approximate Nonlinear Methods with RC Dual System (이중골조에 대한 비선형 약산법들의 응답특성)

  • Nam Young-Woo;Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각법에 따른 열간 단조 금형의 수명 평가)

  • 김병민;김동환
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.408-413
    • /
    • 2003
  • Dies may have to be replaced for a number of reasons, such as changes in dimensions due to die wear or plastic deformation, deterioration of the surface finish, break down of lubrication and cracking or breakage. In this paper, die cooling methods have been suggested to improve die service life considering die wear and plastic deformation in hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. It was found that the use of die with cooling hole was more effective than that of direct cooling method to increase the die service life for spindle component.

Identification of Interior Noise Sources by Using Reconstruction of Active Sources and Surface Admittance (능동음원 및 벽면 어드미턴스의 재구성을 통한 실내 소음원의 정확한 규명 방법)

  • 김영기;김양한
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.435-440
    • /
    • 1998
  • The main objective of this study is to estimate location and strength of sound sources distributed on the surface of an enclosure. Acoustic holography method has been used to identify the sources in an interior sound field. However, it can not completely distinguish between the direct sound field from sources and the reflections from surfaces. The method just reconstructs the entire sound field based on the sound pressure at the finite number of measurement points. In this stduy, a method which estimates only the active sources by using measurements of field pressure and surface admittance is proposed. An in-situ technique to estimate the general boundary condition is also proposed by using acoustic holography, assuming the surfaces are locally reacting.

  • PDF