• 제목/요약/키워드: Direct solar

검색결과 414건 처리시간 0.027초

독립형 PV시스템용 전력변환기 제어 알고리즘 (The Control Algorithm of Power-conditioner for Stand-alone PV System)

  • 정영석;강기환;김홍성;정명웅;유권종;송진수
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1998년도 추계 학술발표회 논문집
    • /
    • pp.209-215
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. therefore SPVS can be classified into variable types in accordance with connection type between battery and solar cell. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell and battery. Therefore SPVS with charge and discharge controller which can operate solar cell at maximum power point is designed and analyzed by simulation in this paper.

  • PDF

진공관형 집열기 히트파이프 접촉방식에 따른 집열성능 비교 (Comparison of Collecting Performance according to Contact Types of Heatpipe in Vacuum Tube Type Solar Collector)

  • 윤지훈;정인국;이중섭;정경택;서정세
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.122-127
    • /
    • 2011
  • In this study, it was compared collecting performance according to contact types between heatpipe and manifold of vacuum tube type solar collector. Between two types, direct contact type is better in collecting performance. On the other hand, Indirect type have advantage in maintenance. In the result of numerical analysis, As the temperature of heatpipe and flow rate of working fluid increased, difference of outlet mean temperature of two types became large. Also, it could be confirmed, as contact resistance between heatpipe and copper tube in indirect type increased, the difference increased too. Useful data in selection and design in vacuum tube type solar collector were proposed by the results of numerical analysis.

수소생산을 위한 태양열 이용 메탄 분해 반응기 개발 (Development of Methane Decomposition Reactor for Hydrogen Production Using Solar Thermal Energy)

  • 김하늘;김종규
    • 신재생에너지
    • /
    • 제17권2호
    • /
    • pp.40-49
    • /
    • 2021
  • This paper explains the development process of methane decomposition to hydrogen and carbon black using solar thermal energy. It also demonstrates the advantages and disadvantages of five different reactors for each development stage, including the reactor's experimental results. Starting with the initial direct heating type reactor, the indirect heating type reactor was developed through five modifications. The 40-kWth solar furnace installed at the Korea Institute of Energy Research was used for the experiment. In the experiment using the developed indirect heating reactor, an 89.0% methane to hydrogen conversion rate was achieved at a methane flow rate of 40 L/min, obtained at about twice the flow rate compared to previous advanced studies.

STUDY ON THERMAL MODELING METHODS OF A CYLINDRICAL GROUND OBJECT CONSIDERING THE SPECTRAL SOLAR RADIATION THROUGH THE ATMOSPHERE

  • Choi Jun-Hyuk;Choi Mi-Na;Gil Tae-Jun;Kim Tae-Kuk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.205-208
    • /
    • 2005
  • This research is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground considering the spectral solar radiation through the atmosphere. The thermal modelling is essential for identifying the objects on the scenes obtained from the satellites. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We developed a software that could be used to model the thermal problems of the ground objects irradiated by the spectral solar radiation. This software can be used to handle the conduction within the object as a one-dimensional mode into the depth or as a three-dimensional mode through the media. LOWTRAN7 is used to model the spectral solar radiation including the direct and diffuse solar radiances. In this paper, temperature distributions on the objects obtained by using the one-dimensional and the three-dimensional thermal models are compared with each other to examine the applicability of the relatively easy-to-apply one-dimensional model.

  • PDF

국내 일사량의 성분 분석 (Analysis of Solar Radiation Components in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.8-12
    • /
    • 2009
  • The Knowledge of the solar radiation components are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high thermodynamic efficiency achievable only at the higher temperatures. In order to estimate the performance of concentrating thermal systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since August, 2002. KIER's component data will be extensively used by concentrating system users or designers as well as by research institutes. The Result of analysis shows that the annual-average daily diffuse radiation on the horizontal surface is $1,458cal/m^2$ and daily direct radiation on the horizontal surface is $1,632cal/m^2$ for all over the 16 areas in Korea.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • 유현준;;김현철;김명준;양윤정;이선희;신현정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

A sun tracking control system using two DOF active sensor array

  • Ha, Yun-Su;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1310-1317
    • /
    • 2014
  • In our daily life, the need of energy increases day by day. However, the amount of natural resources on the earth is limited and thus gaining renewable energy as an energy resource is one of the important and urgent problems. Solar energy is one of the most popular available energy sources that can be converted into electricity by using solar panels. In order for solar panels to produce maximal output power, the incident angle of the sunlight needs to be persistently perpendicular to the solar panel. By the way, most of the solar panels are installed at fixed position and direction. Therefore, as the sun's position changes, it is impossible to produce maximal output power inevitably. To improve this problem, in this paper, a sun tracking system using two degree-of-freedom (DOF) active sensor array is proposed so that the solar panel may always direct sunlight perpendicularly. And also a series of software, such as a search mode and a holding mode, which can control the developed sun tracking system is developed. Several experiments using the implemented sun tracking system are executed and the effectiveness of the system is verified from the experimental results.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • 최하나;이선숙;정택모;김창균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

주택용 3kW 태양광발전시스템의 구성요소법 특성 분석 (Characteristics analysis of Residential 3kW PV System)

  • 변문걸;박정국;임홍우;이강연;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1181-1182
    • /
    • 2006
  • The solar power system comprises a solar battery that directly converts light energy to electrical energy with a photovoltaic effect and a power converter system, that is, inverter that converts direct current power, which is generated from solar battery to common alternating current. In this paper, database was constituted through remote monitoring supervision measurement for the long-time positive operation of 3kW solar power system installed within the solar energy positive research complex of Chosun University. As a result of analyzing the reduction of the efficiency of solar battery and inverter that are compositional components of PV system through an analysis on the acquired data, the PV output was proven over 65% of the total output when insolation intensity exceeded 600W/m2 in 2005, and the array conversion efficiency dropped much more than rating; meanwhile, insolation intensity dropped below 600W/m2. Therefore, it has been demonstrated that approximately 35% of the entire amount of PV output operated under the condition that the inverter efficiency rate dropped rapidly by 60 to 70%.

  • PDF

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.