• Title/Summary/Keyword: Direct shear

Search Result 774, Processing Time 0.025 seconds

Analysis of Shear Strength of Domestic Municipal Wastes by Large Shear Test (대형전단시험에 의한 국내 도시폐기물의 전단특성 분석)

  • 정하익;이용수;정길수;홍승서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.529-532
    • /
    • 1999
  • This paper presented the characteristics of shear strength of domestic municipal wastes including S landfill wastes. A series of large direct shear tests were peformed with waste specimens sampled from S landfill located in middle area of domestic land. Investigated items were cohesion and internal friction angle of shear strength parameter. The test result was compared with existing test data. The research results showed that cohesion 0.1296∼0.1340kg/$\textrm{cm}^2$ and angle of friction 22.1$^{\circ}$∼25.3$^{\circ}$for S landfill wastes, cohesion 0∼0.381kg/$\textrm{cm}^2$ and friction angle 22.1$^{\circ}$∼41.3$^{\circ}$ for domestic landfill wastes.

  • PDF

The Shear Behavior of Composite Material for Retaining Wall (옹벽구조물용 복합재료의 전단거동 특성)

  • Oh, Gi-Dae;Kim, Kyung-Yul;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1359-1364
    • /
    • 2008
  • In these days, the composite material is popular as a material of Retaining wall because of the advantages of economy and construction. In general, retaining wall is not estimated for the stability of structure, but some of retaining walls that are composed of composite materials became thin because of the highly dense materials. So the concern of shear failure for the structure is rising. Because standard test criterion and large scale tests equipment are rarely available, few studies are performed. So, in this study, we performed large scale direct shear tests for various confining stresses(147, 294, 441 kPa), and estimate shear behavior of composite material by the relation of shear stress - displacement and vertical - shear displacement.

  • PDF

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer (축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성)

  • 신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation (절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

Estimation model of shear strength of soil layer using linear regression analysis (선형회귀분석에 의한 토층의 전단강도 산정모델)

  • Lee, Moon-Se;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1065-1078
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle ($\Phi$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

  • PDF

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

Shear Performance Evaluation at the Interface Between CLT and Concrete (구조용 집성판(CLT)-콘크리트 경계면의 전단성능 평가)

  • Park, Keum-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • An experimental study was carried out to evaluate the shear performance at the interface composed of structural laminates and concrete. The main variables are the number of CLT layers and the shape of the shear connector. The number of CLT layers consisted of 3 and 5 layers. A total of 6 test specimens for shear performance evaluation were prepared in the form of a shear connector, a direct screw type and a vertically embedded type. As a result of the experiment, similar behavior was shown in all specimens, regardless of the number of layers, including direct screw type (SC series) and vertically embedded type (VE series). The behavior at the joint surface was damaged due to the occurrence of initial shear cracks, expansion of shear groove cracks, and splaying at the interface after the maximum load.After the maximum load, the shear strength decreased gradually due to the effect of the shear connector. It can be seen that the shear strength of all specimens is determined by shear and compression stress failure of concrete at the interface of the notch joint.

DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW (전단유동에서 자성사슬의 거동에 대한 직접수치해석)

  • Kang, T.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Numerical simulations of fracture shear test in anisotropy rocks with bedding layers

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Nejati, Hamid Reza
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • In this paper the effect of bedding layer on the failure mechanism of rock in direct shear test has been investigated using particle flow code, PFC. For this purpose, firstly calibration of pfc2d was performed using Brazilian tensile strength. Secondly direct shear test consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and rock bridge length was 10 mm, 40 mm and 60 mm. In each rock bridge length, bedding layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally 21 models were simulated and tested. The results show that two types of cracks develop within the model. Shear cracks and tensile cracks. Also failure pattern is affected by bridge length while shear strength is controlled by failure pattern. It's to be noted that bedding layer has not any effect on the failure pattern because the layer interface strength is too high.

Confinement model for RC columns strengthened with direct-fastened steel plates

  • Shan, Z.W.;Looi, D.T.W.;Su, R.K.L.
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.367-381
    • /
    • 2021
  • Reinforced concrete (RC) columns can be strengthened by direct fastening of steel plates around a column, forming composite actions. This method can increase both the total load bearing area and the concrete confinement stress. To predict the axial load resistance of strengthened RC columns, the equivalent passive confinement stress of the stirrups and the steel jacket should be accurately quantified, which requires the stress in the stirrups and shear force in the connections to be first obtained. In this paper, parameters, i.e., the stress ratio of the stirrups and shear force ratio of steel plate connectors are utilized to quantify the stress of the stirrups and shear force in the connections. A mechanical model for determining the stress ratio of the stirrups and shear force ratio of steel plate connectors is proposed and validated using the experimental results in a previous study. The model is found to be robust. Subsequently, a parametric study is conducted and the optimum stress ratios of the stirrups and the optimum shear force ratios of connectors are proposed for engineering designs.