• 제목/요약/키워드: Direct numerical simulation

검색결과 454건 처리시간 0.027초

등방성 난류에서 입자의 회전에 의한 분산 특성의 변화 (Modification of Particle Dispersion in Isotropic Turbulence by Free Rotation of Particle)

  • 박용남;이창훈
    • 대한기계학회논문집B
    • /
    • 제34권7호
    • /
    • pp.665-670
    • /
    • 2010
  • 등방성 난류에서 부유된 무거운 입자의 운동에서, 입자의 회전이 고려되었을 때 입자의 분산 특성에 나타난 변화를 살펴보았다. 입자의 회전을 고려함으로 인해 추가로 고려되는 양력은 그 크기가 작은 것으로 알려져 있고, 따라서 많은 연구에서 회전에 의한 효과는 무시되었다. 본 연구에서는 라그랑지안 기법으로 추적한 입자의 궤적에 미치는 양력의 크기를 속도와 가속도의 자기상관함수 및 확률밀도함수를 통해 정량적으로 살펴보았다. 속도 통계량에서는 양력에 의한 효과가 무시할 만 했으나, 가속도와 관련된 통계는 양력에 의한 영향이 있는 것으로 확인되었다. 난류의 가속도는 간헐성을 띄며, 간헐적인 특성은 난류 구조와 관련이 있다는 것이 알려져 있다. 따라서 입자에 작용하는 양력과 난류구조에 연관성이 있다는 유추가 가능하다.

교량 유지관리 전략 수립을 위한 실용적 도로이용자비용 추정 모델 (Practical Model to Estimate Road User Cost for Bridge Maintenance Strategy)

  • 박경훈;선종완;이상윤;이종순;조효남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.131-142
    • /
    • 2007
  • 생애주기비용을 고려한 교량의 설계 및 유지관리에 있어서, 점검진단, 보수보강 등에 소요되는 직접적인 비용뿐만 아니라 간접적인 비용인 도로이용자비용은 중요한 비용항목으로 고려되고 있다. 직접비용과 비교하여 상대적으로 추정이 곤란한 도로이용자비용의 추정을 위하여 우회도로의 효과를 고려한 이용자지연비용과 차량운행비용의 정식화를 수행하고, 시간지체에 따른 도로이용자비용의 추정을 위한 회귀모델 개발을 위하여 교통해석과 회귀분석을 수행하였다. 개발된 회귀모델을 생애주기 비용 및 성능 기반 유지관리 전략 수립에 적용하여 도로이용자비용이 생애주기분석에 미치는 영향을 분석하고, 개발된 모델의 적용성에 대해서 고찰하였다. 도로이용자비용은 생애주기분석에 기초한 유지관리전략수립에 큰 영향을 미치며, 개발된 회귀모델은 교량의 도로이용자비용의 추정에 실용적으로 활용될 수 있을 것으로 판단된다.

저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발 (Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part I: Site Investigation into the cause of damage

  • Jung, Min-Su;Kawajiri, Shunzo;Hur, Jin-Suk;Shibuya, Satoru
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.3-10
    • /
    • 2010
  • Case study was carried out on the interpretation of the mechanical behavior of a severely damaged reinforced earth wall comprising geotextile with the concrete panel facing. In this part I, the outline of the damaged reinforced earth wall is in detail described. The background and cause of the damage are discussed based on the results of site investigation. The engineering properties of the fill were examined by performing various in-situ and laboratory tests, including the surface wave survey (SWS), PS-logging, RI-logging, soaking test, the direct shear box (DSB) test, bender element (BE) test, etc. The background as well as the cause for the damage of the wall may be described such that i) a considerable amount of settlement took place over a 3m thick weak soil layer in the lower part of the reinforced earth due to seepage of rainfall water, ii) the weight of the upper fill was partially supported by the geo-textile hooked on the concrete panels (n.b., named conveniently "hammock state" in this paper), and iii) the concrete panels to form the hammock were severely damaged by the unexpectedly large downwards compression force triggered by the tension force of the geotextile. The numerical simulation for the hammock state of the wall, together with counter-measures to re- stabilize the wall is subsequently described in Part II.

  • PDF

초음속 공기 유동장에서의 수소 확산 화염 특성에 대한 연구 (The Characteristics of Unconfined Hydrogen Diffusion Flames in Supersonic Air Flows)

  • 김제흥;심재헌;김지호;윤영빈
    • 한국추진공학회지
    • /
    • 제4권4호
    • /
    • pp.78-86
    • /
    • 2000
  • Mach 1.8의 동축공기를 갖는 수소 난류 화산 화염의 특성을 이해하는 것이 본 연구의 목적이다. 화염길이와 연료유동의 자취에 대한 직접사진, Acetone PLIF, Mie scattering, 수치해석법을 이용하여 화염의 구조를 분석하였다. 연료의 유속를 고정시켰을 때, 공기의 유속 증가에 따른 변화를 측정하였다. 아음속 화염의 길이는 급격히 감소한 반면, 초음속 화염의 길이는 완만하게 증가하였다. 또한 연료 노즐 립의 두께 변화에 따른 화염의 소염 특성을 관찰하였다. 노즐 립의 두께에 따라 화염 안정성이 증가하였는데 이는 초음속 화염의 안정화를 위한 최소 두께 값이 존재함을 나타낸다. 유동장 구조를 분석한 결과, 연료 제트가 고압영역에 가로 막혀서 축방향 모멘텀을 잃고, 저산란 영역이 만들어지는 것을 확인하였다. 또한, 모멘텀을 잃은 연료가 재순환 영역을 따라 순환하면서 긴 체류시간을 갖기 때문에 예혼합 영역이 만들어 졌음이 밝혀졌다.

  • PDF

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Enhancement of fluid flow performance through deep fractured rocks in an insitu leaching potential mine site using discrete fracture network (DFN)

  • Yao, Wen-li;Mostafa, Sharifzadeh;Ericson, Ericson;Yang, Zhen;Xu, Guang;Aldrich, Chris
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.585-594
    • /
    • 2019
  • In-situ leaching could be one of the promising mining methods to extract the minerals from deep fractured rock mass. Constrained by the low permeability at depth, however, the performance does not meet the expectation. In fact, the rock mass permeability mainly depends on the pre-existing natural fractures and therefore play a crucial role in in-situ leaching performance. More importantly, fractures have various characteristics, such as aperture, persistence, and density, which have diverse contributions to the promising method. Hence, it is necessary to study the variation of fluid rate versus fracture parameters to enhance in-situ leaching performance. Firstly, the subsurface fractures from the depth of 1500m to 2500m were mapped using the discrete fracture network (DFN) in this paper, and then the numerical model was calibrated at a particular case. On this basis, the fluid flow through fractured rock mass with various fracture characteristics was analyzed. The simulation results showed that with the increase of Fisher' K value, which determine the fracture orientation, the flow rate firstly decreased and then increased. Subsequently, as another critical factor affecting the fluid flow in natural fractures, the fracture transmissivity has a direct relationship with the flow rate. Sensitive study shows that natural fracture characteristics play a critical role in in-situ leaching performance.

T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구 (Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator)

  • 정수진;오광호
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Computational simulations of transitional flows around turbulence stimulators at low speeds

  • Lee, Sang Bong;Seok, Woochan;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.236-245
    • /
    • 2021
  • In this study, direct numerical and large eddy simulations of transitional flows around studs were conducted to investigate the effectiveness of turbulence stimulators at very low speeds for the minimum propulsion power condition of four knots. For simplicity, the studs were assumed to be installed on a flat plate, while the wake was observed up to 0.23 m downstream behind the second stud. For applicability to a model ship, we also studied the flow characteristics behind the first and second studs installed on a curved plate, which was designed to describe the geometry of a bulbous bow. A laminar-to-turbulent transition was observed in the wake at ReD ≥ 921 (U≥0.290 m/s), and the wall shear stress at ReD = 1162 (U = 0.366 m/s) in the second wake was similar to that of the fully developed turbulent boundary layer after a laminar-to-turbulent transition in the first wake. At ReD = 581 (U = 0.183 m/s), no turbulence was stimulated in the wake behind the first and second studs on the flat plate, while a cluster of vortical structures was observed in the first wake over the curved plate. However, a cluster of vortical structures was revealed to be generated by the reattachment process of the separated shear layer, which was disturbed by the first stud rather than directly initiated by the first stud. It was quite different from a typical process of transition, which was observed at relatively high ReD that the spanwise scope of the turbulent vortical structures expanded gradually as it went downstream.