• 제목/요약/키워드: Direct hydrogen

검색결과 439건 처리시간 0.025초

부피법을 이용한 고압·극저온 수소 흡착량 측정 방식의 기본 원리 (Volumetric Hydrogen Sorbent Measurement at High Pressure and Cryogenic Condition - Basic Measurement Protocols)

  • 오현철
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.349-356
    • /
    • 2016
  • Volumetric capacity metrics at cryogenic condition are critical for technological and commercial development. It must be calculated and reported in a uniform and consistent manner to allow comparisons among different materials. In this paper, we propose a simple and universal protocol for the determination of volumetric capacity of sorbent materials at cryogenic condition. Usually, the sample container volume containing porous sample at RT can be directly determined by a helium expansion test. At cryogenic temperatures, however, this direct helium expansion test results in inaccurate values of the sample container volume for microporous materials due to a significant helium adsorption, resulting significant errors in hydrogen uptake. For reducing this container volume error, therefore, we introduced and applied the indirect method such as 'volume correction using a non-porous material', showing a reliable cold volume correction.

CHARACTERISTICS OF BIOHYDROGEN PRODUCTION AND MICROBIAL COMMUNITY AS A FUNCTION OF SUBSTRATE CONCENTRATION

  • Youn, Jong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2005
  • The feasibility of hydrogen production with a raw seed sludge through direct acclimation of feedstock was investigated at acidogenic stage, and methane was harvested at followed methanogenic stage in an anaerobic two-stage process. Hydrogen content was higher than 57% at all tested organic loading rates (OLRs) and the yield of hydrogen ranged from 1.5 to 2.4 mol H2/mol hexose consumed and peaked at 6 gVSl-1day-1. Normal butyrate and acetate were main volatile fatty acids (VFAs), whereas the concentration of propionate was insignificant. The hydrogen-producing bacteria, Clostridium thermosaccharolyticum, was detected with strong intensity at all tested organic loading rates (OLRs) by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) analysis. From COD balance in the process, the fraction of the feed-COD converted to the hydrogen-COD at acidogenic stage ranged from 7.9% to 9.3% and peaked at 6 gVSl-1day-1, whereas the fraction of feed-COD converted to the methane-COD at methanogenic stage ranged from 66.2% to 72.3% and peaked at 3 gVSl-1day-1.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

수소기관에서의 배기가스에 관한 연구 (Study on Emission Characteristics in a Hydrogen-fueled Engine)

  • 조웅래;최경호;배석천
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

전이금속-카본나이트라이드 나노튜브 혼성체: 화학적 수소화물 수용액의 수소발생 촉매 (Transition Metal Nanoparticles-Carbon Nitride Nanotube Hybrids: Direct Hydrogen Generation Catalyst of Chemical Hydride Aqueous Solution)

  • 신원호;정형모;강정구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.781-781
    • /
    • 2009
  • We demonstrate that trasition metal catalyst nanoparticle (NP) attached to carbon nitride nanotubes (CNNTs) show selective catalytic activities on hydrogen generation from the water solution including chemical hydride negative ions. The natural bonding orbitals (NBO) obtained from the first-principle calculations shows that the catalysts attached on CNNTs are quite differently polarized when they play for hydrogen generation from chemical hydride ions and hydrogen of water. For Co and Ni nanoparticles attached on CNNTs, their charges are more positively polarized when they interact with $BH_4^-Na^+$ and $H_2O$ while Pt atoms are less positively charged. In this matter, the increased positive charges on catlyst nanoparticles are proven to be more efficient in attracting hydride negative ions, thus improving hydrogen generate rates. Consequently, this result implies that these different charge polarization leads to selective catalytic activities of NPs-CNNTs. In the hydrogen generation experiments, Co-CNNTs shows the highest hydrogen generation rate when the similar amounts of catalyst nanoparticles (Co, Ni, and Pt) are dispersed on the sidewalls of CNNTs.

  • PDF

직접분사식 고압 수소분사밸브의 개발에 관한 연구 (A Study on Development of High Pressure Hydrogen Injection Valve)

  • 김윤영;안종윤;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

Uranium thermochemical cycle used for hydrogen production

  • Chen, Aimei;Liu, Chunxia;Liu, Yuxia;Zhang, Lan
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.214-220
    • /
    • 2019
  • Thermochemical cycles have been predominantly used for energy transformation from heat to stored chemical free energy in the form of hydrogen. The thermochemical cycle based on uranium (UTC), proposed by Oak Ridge National Laboratory, has been considered as a better alternative compared to other thermochemical cycles mainly due to its safety and high efficiency. UTC process includes three steps, in which only the first step is unique. Hydrogen production apparatus with hectogram reactants was designed in this study. The results showed that high yield hydrogen was obtained, which was determined by drainage method. The results also indicated that the chemical conversion rate of hydrogen production was in direct proportion to the mass of $Na_2CO_3$, while the solid product was $Na_2UO_4$, instead of $Na_2U_2O_7$. Nevertheless the thermochemical cycle used for hydrogen generation can be closed, and chemical compounds used in these processes can also be recycled. So the cycle with $Na_2UO_4$ as its first reaction product has an advantage over the proposed UTC process, attributed to the fast reaction rate and high hydrogen yield in the first reaction step.

분사 압력에 따른 수소 제트의 형상과 LIBs를 적용한 국부 당량비 계측 (Hydrogen Jet Structure and Measurement of Local Equivalence Ratio by LIBs under the Different Injection Pressure)

  • 이상욱;김정호;배충식
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.84-93
    • /
    • 2022
  • To implement carbon-neutrality in transportation sectors until 2050, hydrogen is considered a promising fuel for internal combustion engines because hydrogen does not contain carbon itself. Although hydrogen does not emit CO2 emission from its combustion process, the low energy density in a volume unit hinders the adoption of hydrogen. Therefore, the understanding of hydrogen jet behavior and measurement of equivalence ratio must be conducted to completely implement the high-pressure hydrogen direct injection. The main objective of this research is feasibility test of hydrogen local equivalence ratio measurement by laser-induced breakdown spectroscopy (LIBs). To visualize the macroscopic structure of hydrogen jet, high-speed schlieren imaging was conducted. Moreover, LIBs has been adopted to validate the feasibility of hydrogen local equivalence ratio measurement. The hydrogen injection pressure was varied from 4 MPa to 8 MPa and injected in a constant volume chamber where the ambient pressure was 0.5 MPa. The increased injection pressure extends the vertical penetration of hydrogen jet. Due to the higher momentum supply when the injection pressure is high, the hydrogen has easily diffused in all directions. As the laser trigger timing has delayed, the low hydrogen atomic emission was detected due to the longer mixture formation time. Based on equivalence ratio measurement results, LIBs could be applied as a methodology for hydrogen local equivalence ratio measurement.

소형 수소액화기 설계 및 운전에 관한 연구 (Design and Operation of a Small-Scale Hydrogen Liquefier)

  • 백종훈;강상우;강형묵;나다니엘 갈소;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.