• Title/Summary/Keyword: Direct hydrogen

Search Result 439, Processing Time 0.021 seconds

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

A Study on the Development of Hydrogen Fueled Engine : Heat Loss of Direct Injection Hydrogen Fueled Engine (수소기관 개발을 위한 기초연구(직접분사식 수소기관의 열손실))

  • Nam, Seong Woo;Lee, Jong Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Analysis of heat loss is needed to achieve the high performance and high efficiency in hydrogen engine. So, cooling losses at each part of the direct injection hydrogen fueled engine were measured to evaluate the behavior and distribution of heat loss. Unsteady instantaneous temperature and heat flux at cylinder head were measured by use of instantaneous temperature prove. And these results were compared with those of gasoline engine.

  • PDF

Study on Cooling of Hydrogen Gas for the Pre-Cooler in the Hydrogen Refueling Station (수소충전소용 프리쿨러를 위한 수소가스 냉각에 관한 연구)

  • LEE, KYUNG-HAN;KOO, KYUNG-MO;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • In the hydrogen refueling station (HRS), it is need the pre-cooling system (PCS) to limit the inside temperature ($85^{\circ}C$) of the onboard thank (700 bar) and to charge the hydrogen at short time (within 3 minutes) to fuel cell electric vehicle (FCEV). From those safety reasons, the temperature of hydrogen gas must be controled $-33^{\circ}C$ to $-40^{\circ}C$ in PCS. The cooling test of the gaseous ($N_2$, He, $H_2$) was carried out using heat exchanger (pre-cooler) by indirect cooling and direct cooling method. It was confirmed that the temperature of hydrogen gas had below $-40^{\circ}C$ at below $-75^{\circ}C$ of chiller temperature in direct cooling.

Development of Mixed Conducting Ceramic Membrane for High Purity Hydrogen and Carbon Production from Methane Direct Cracking (복합전도성 세라믹 분리막의 탄화수소 직접분해에 의한 고순도 수소와 탄소 제조)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.649-655
    • /
    • 2011
  • Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.

A Study on the Characteristics of Silicon Direct Bonding by Hydrogen Plasma Treatment (수소 플라즈마 처리에 의한 실리콘 직접접합 특성에 관한 연구)

  • Choe, U-Beom;Ju, Cheol-Min;Kim, Dong-Nam;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.424-432
    • /
    • 2000
  • The plasma surface treatment, using hydrogen gas, of the silicon wafer was investigated as a pretreatment for the application to silicon-on-insulator (SOI) wafers using the silicon direct bonding technique. The chemical reactions of hydrogen plasma with surfaces were used for both the surface activation and the removal of surface contaminants. As a result of exposure of silicon wafer to the plasma, an active oxide layer was formed on the surface, which was rendered hydrophilic. The surface roughness and morphology were estimated as functions of plasma exposing time as well as of power. The surface became smoother with decreased incident hydrogen ion flux by reducing plasma exposing time and power. This process was very effective to reduce the carbon contaminants on the silicon surface, which was responsible for a high initial surface energy. The initial surface energy measured by the crack propagation method was 506 mJ/m2, which was up to about three times higher than that of a conventional RCA cleaning method.

  • PDF

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

ANALYSIS OF DIRECT INJECTION SI STRATIFIED COMBUSTION IN HYDROGEN LEAN MIXTURE - COMBUSTION PROMOTION AND COOLING LOSS BY HYDROGEN -

  • Shudo, Toshio;Tsuga, Koichiro
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.85-91
    • /
    • 2001
  • Characteristics of methane direct-injection spark-ignition stratified combustion in lean hydrogen mixture were analyzed both in a single cylinder engine and in a constant volume combustion chamber. Combustion pressure and Instantaneous combustion chamber wall temperature during the combustion process were measured with a thin-film thermocouple and used in analyses of combustion and cooling loss. Results in this research show that the premixed hydrogen increases cooling loss to combustion chamber wall while achieving combustion promotion, and the combustion system is effective especially in lean mixture conditions. Analysis of flame propagation was also done with Schlieren photography in the constant volume combustion chamber.

  • PDF

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration (우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매)

  • YU, SU SANG;OH, TAEK HYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 2020
  • This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

The Effect of Compression Ratio on Combustion and Performance Characteristics of Direct Injection Spark Ignition Hydrogen Fueled Engine. (직접분사식 스파크점화 수소기관의 연소 및 성능특성에 미치는 압축비의 영향)

  • 권병준;이종윤;이종태;이성열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1993
  • As fundamental step to find the suitable compression ratio of hydrogen fueled engine, performance and combustion characteristics of that engine were analyzed. Qualitative characteristics of the hydrogen fueled engine were similar to that of the gasoline engine, and it was also found that knock limit compression ratio of the hydrogen fueled engine was higher than that of the gasoline engine.

  • PDF