• 제목/요약/키워드: Direct ethanol fuel cell

검색결과 13건 처리시간 0.035초

과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구 (A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC))

  • 이남진;김현수;차인수;최정식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

세라믹 멤브레인 활용 직접 에탄올 연료전지 (Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane)

  • 정재근;윤영훈
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.419-424
    • /
    • 2014
  • Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.

휴대전원용 직접알코올 연료전지의 OCV특성 연구 (Operating Characteristics on Coupling of Fuel-Cell System with Natural Gas Reformer)

  • 박세준;최용성;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.592-596
    • /
    • 2009
  • DAFC(direct alcohol fuel cell) takes the same structure and operational principle with PEMFC(Proton exchange membrane fuel cell). However, DAFC, which uses liquid alcohol instead of hydrogen as fuel, is able to be used as a portable power for small-scaled electronic devices such as MP3, PMP, and mobile phone because alcohol is quite convenient steady-state compound to carry and store it. This paper presents the OCV(open circuit voltage) characteristics of the cases which are alcohol species and different weight rate of ethanol, respectively. The OCV of methanol fuel cell is slightly higher 0.2V than ethanol one, and 8% wt. rate ethanol is rated as the most appropriate fuel for DAFC.

직접에탄올 연료전지의 운전조건에 관한 연구 (A Study on an Operating Conditions for the Direct Ethanol Fuel Cell)

  • 김영춘;구본국;장문국;지학배;한상보;박재윤
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2076-2082
    • /
    • 2011
  • The goal of this paper is to find an operating conditions of the single direct ethanol fuel cell such as the cell temperature, and flow rates of ethanol and oxygen. To investigate the output characteristics, the electrical current increased from 0[A] with interval of 0.001[A] every 2[s], and the cell voltage was increased until the voltage became 0.05[V]. Related to the effect of the cell temperature, the output characteristics both voltage and power were increased upto 80[$^{\circ}C$] according to the increase of the current density, but those were decreased over that temperature. In addition, the optimal flow rate of ethanol in anode was identified as of 2[mL/min] due to the dependence of generation rate such as the hydrogen ion and electron. And the flow rate of oxygen in cathode was desirable to about 300[sccm/min], it might be affected by the chemical reaction rate of the water formation among hydrogen ion, electron, and oxygen. Consequently, the fundamental conditions were identified in this work, and it will be carried out to find the best conditions of membrane by the effect of the plasma surface treatment, and the effect of other catalysts except for a platinum.

직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물 (Impurities in the methanol fuel on the performance of direct methanol fuel cell)

  • 백동현;이재혁;박영철;임성엽;김상경;정두환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

직접 에탄올 연료전지(DEFC)의 anode용 삼원소 전극촉매[$Pt_5Ru_4M$(M= Ni, Sn, Mo and W)]의 에탄올 전기산화반응에 관한 연구 (A Study on Electro-oxidation of Ethanol with $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) Ternary Electrocatalysts for Anode of Direct Ethanol Fuel Cell(DEFC))

  • 노창수;강대규;손정민
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.423-429
    • /
    • 2008
  • This work was carried out to improve the performance of anodic electrocatalysts in direct ethanol fuel cell(DEFC). PtRu and $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) electrocatalysts were prepared by using a $NaBH_4$ reduction method. Alloy crystal structure and particle size of electrocatalysts were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The XRD analysis of the electrocatalysts revealed that the face-centered cubic(fcc) peaks shifted to slightly higher diffraction angles when third metals were added. Average size of the uniform particles was observed to be approximately $3{\sim}3.5\;nm$ from the TEM image. The electrochemical measurements were carried out in the solution 1M $H_2SO_4$ and 1M $C_2H_5OH$ at room temperature. Cyclic-voltammogram results showed that $Pt_5Ru_4W$ electrocatalyst exhibited much higher current density for ethanol oxidation of $2.73\;mA/cm^2$ than PtRu electrocatalyst of $0.73\;mA/cm^2$.

직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석 (Synthesis and Characterization of Pt based Alloy Catalysts for Direct Ethanol Fuel Cell)

  • 김이영;김수길;한종희;김한성
    • 전기화학회지
    • /
    • 제11권2호
    • /
    • pp.109-114
    • /
    • 2008
  • 에탄올이 이산화탄소가 생성되는 경로로 반응할 경우 12개의 전자를 발생시키게 되지만 실제로는 두 개의 탄소 원자사이의 결합력 때문에 완전 산화시키는 것이 쉽지 않다. 따라서 고성능 에탄을 산화촉매의 개발은 에탄을 연료전지 실용화에 필수적이다. 본 연구는 Pt에 Sn, Au을 첨가하여 이원계, 삼원계 촉매를 제조하여 에탄올에서의 활성과 촉매의 특성에 대한 분석을 수행하였다. 촉매합성은 modified polyol 방법을 이용하였으며 Vulcan XC-72R 담지체를 사용하여 20 wt%로 담지하였다. PtSn/c 합금촉매는 Pt : Sn의 비율이 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5으로 합성하였으며, PtSnAu/C 합금촉매는 Pt : Sn : Au의 비율을 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3으로 합성하였다. 촉매특성은 XRD, TEM 분석을 통해 분석한 결과 $1.9{\sim}2.4\;nm$ 정도의 입자의 크기와 면심입방구조의 구조를 가지는 것으로 확인하였다. 에탄올 산화에 대한 합금촉매의 활성은 순환전류전압법으로 실험하였고, 그 중 가장 높은 성능을 가진 PtSn(1.5 : 1)/C와 PtSnAu(5 : 2 : 3)/C 합금촉매를 단위전지 성능평가륵 통해 실제 연료전지 구동환경에서 촉매의 활성을 측정하였다. 그 결과 에탄을 산화에 가장 높은 성능을 나타낸 촉매는 PtSn/c(1.5 : 1)이었고, 촉매의 안정성은 PtSnAu/C(5 : 2 : 3)에서 높게 나타났다.

Development of Inexpensive High Energetic Electrodes Ni-Cu and Ni-CeO2-Cu for Renewable Energy through Direct Ethanol Fuel Cell

  • Guchhait, Sujit Kumar;Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.190-198
    • /
    • 2016
  • Application of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode materials. Development of inexpensive, high energetic electrode is the need of the hour to produce pollution free energy using bio-fuel through a fuel cell. Ni-Cu and Ni-CeO2-Cu electrode materials, electro synthesized by pulse current have been developed. The surface morphology of the electrode materials is controlled by different deposition parameters in order to produce a high current from the electro-oxidation of the fuel, the ethanol. The developed materials are electrochemically characterized by Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiodynamic polarization tests. The results confirm that the high current is due to their enhanced catalytic properties viz. high exchange current density (i0), low polarization resistance (Rp) and low impedance. It is worthwhile to mention here that the addition of CeO2 to Ni-Cu has outperformed Pt as far as the high electro catalytic properties are concerned; the exchange current density is about eight times higher than the same on Pt surface. The morphology of the electrode surface examined by SEM and FESEM exhibits that the grains are narrow and sub spherical with 3D surface, containing vacancies in between the elongated grains. The fact has enhanced more surface area for electro oxidation of the fuel, giving rise to an increase in current. Presence of Ni, CeO2, and Cu is confirmed by the XRD and EDXS. Fuel cell fabricated with Ni-CeO2-Cu material electrode is expected to produce clean electrical energy at cheaper rates than conventional one, using bio fuel the derived from biomass.

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.