Operating Characteristics on Coupling of Fuel-Cell System with Natural Gas Reformer

휴대전원용 직접알코올 연료전지의 OCV특성 연구

  • 박세준 (동신대학교 공대 전기공학과) ;
  • 최용성 (동신대학교 공대 전기공학과) ;
  • 이경섭 (동신대학교 공대 전기공학과)
  • Published : 2009.12.01

Abstract

DAFC(direct alcohol fuel cell) takes the same structure and operational principle with PEMFC(Proton exchange membrane fuel cell). However, DAFC, which uses liquid alcohol instead of hydrogen as fuel, is able to be used as a portable power for small-scaled electronic devices such as MP3, PMP, and mobile phone because alcohol is quite convenient steady-state compound to carry and store it. This paper presents the OCV(open circuit voltage) characteristics of the cases which are alcohol species and different weight rate of ethanol, respectively. The OCV of methanol fuel cell is slightly higher 0.2V than ethanol one, and 8% wt. rate ethanol is rated as the most appropriate fuel for DAFC.

Keywords

References

  1. James Larminie et al., Fuel Cell Systems Explained, WILEY, pp. 183-184 (2003)
  2. H. Dohle et al., "Process engineering of the direct methanol fuel cell", Journal of Power Sources, Vol. 86, No. 1-2, pp. 469-477 (2000) https://doi.org/10.1016/S0378-7753(99)00456-5
  3. Naoko Fujiwara et al., "Direct ethanol fuel cells using an anion exchange membrane", Journal of Power Sources, Vol. 185, No. 2, pp. 621-626 (2008) https://doi.org/10.1016/j.jpowsour.2008.09.024
  4. H. Hitmi et al., "A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium", Electrochimica Acta, Vol. 39, No. 3, pp. 407-415 (1994) https://doi.org/10.1016/0013-4686(94)80080-4
  5. J. M. L$\acute{e}$ger et al., "How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol", Electrochimica Acta, Vol. 50, No. 25-26, pp. 5118-5125 (2005) https://doi.org/10.1016/j.electacta.2005.01.051
  6. T. Iwasita et al., "Progress in the study of electrocatalytic reactions of organic species", Electroc- himica Acta, Vol. 39, No. 11-12, pp. 1817-1823 (1994) https://doi.org/10.1016/0013-4686(94)85170-0
  7. S. Wasmus et al., "Electrooxidation and reduction of propylenecarbonate, ethylene carbonate and 1,2-propanediol in aqueous acid solution - A comparative study using on-line MS and isotope labelled electrolytes", Electrochimica Acta, Vol. 38, No. 4, pp. 541-552 (1993) https://doi.org/10.1016/0013-4686(93)85010-V
  8. E. Pastor et al., "Spectroscopic investigations of C3 primary alcohols on platinum electrodes in acid solutions.: Part I. n-propanol", Journal of Electroana lytical Chemistry, Vol. 350, No. 1-2, pp. 97-116 (1993) https://doi.org/10.1016/0022-0728(93)80199-R
  9. Shukla A.K et al., "A liquid feed solid polymer electrolyte direct methanol fuel cell operating at near ambient conditions", journal of Power Source, Vol. 76, No. 1, pp. 54-59 (2002) https://doi.org/10.1016/S0378-7753(98)00140-2
  10. Scott K et al., "Engineering aspects of the direct methanol fuel cell system", Journal of Power Source, Vol. 79, No. 1, pp. 43-59 (1999) https://doi.org/10.1016/S0378-7753(98)00198-0
  11. Dohle H et al., "Development of a compact 500W class direct methanol fuel cell stack", journal of Power Source, Vol. 106, No. 1-2, pp. 313-322 (2002) https://doi.org/10.1016/S0378-7753(01)01064-3
  12. J. Cruickshank et al., "The degree and effect of methanol crossover in the direct methanol fuel cell", Journal of Power Sources, Vol. 70, No. 1, pp. 40-47 (1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  13. 김응석, 김철진, "고분자 연료전지 발전시스템에 대한 비선형 관측기 설계", 전기학회논문지, Vol.58, No.2, pp.314-321 (2009)
  14. 고정민, 김종수, 최규연, 강현수, 이병국, "부하의 변화를 고려한 연료전지 스택 동특성 모델링", 전기학회논문지, Vol.58, No.1, pp.93-99 (2009)