• 제목/요약/키워드: Direct combustion

검색결과 544건 처리시간 0.031초

가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구 (A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine)

  • 차준표;윤성준;이석훤;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구 (Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine)

  • 조시현;윤준규;박철웅;오승묵
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.837-844
    • /
    • 2014
  • 최근 자동차 제조사는 강화되는 배출가스 규제를 만족시키고 엔진 효율을 향상시키기 위해 다양한 기술을 연구하고 있다. 그 중 직접분사식 초희박 연소기술은 정밀한 연소제어를 통해 연소효율을 극대화 하고 연비를 향상시킬 수 있는 차세대 기술로 평가받고 있다. 기존 가스엔진에 초희박 직접분사기술을 적용하기 위해 기존의 MPI 엔진의 헤드를 재설계하였다. 기존 압축비10:1에서 12:1로 증가시킴으로써 이에 따른 압력선도, 열방출률, 연료소비율 등의 연소특성과 배출가스특성을 파악하였다. 압축비를 증가시킴에 따라 불안정한 연소상태로 인하여 연료소비율의 개선이 어려웠으나 탄화수소(THC)와 질소산화물(NOx)의 배출은 감소되었다.

대형 CNG기관의 직접분사화에 의한 희박한계확장 (A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine)

  • 박정일;정찬문;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

연소실 직접분사식 성층급기 가솔린기관의 구동안정성에 관한 연구 -열방출율과 도시평균유효압력 변동에 미치는 연료분사압력과 부하변동의 영향- (A Study on Driving Stability of In-cylinder Direct Injection Stratified Charge Gasoline Engine - Effects on HR rate and $COV_{imep}$ of Fuel Injection Pressure and Load Variations -)

  • 이상만;이근오
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.3-10
    • /
    • 1998
  • In general, the stratified charge for direct injection gasoline engine should be introduced to achieve ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, a reflector was adapted on cylinder head. An installation of the reflector in front of the injector nozzle leads the mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally ich to ignite while the lean mixture is wholly introduced into the combustion chamber. In this paper, the characteristics of combustion is analyzed with the variations of injection pressure and load in a stratified-charge direct injection single cylinder gasoline engine.

  • PDF

폐식용유를 이용한 소형 디젤기관의 성능 (Performances of the Used Frying Oil on a Small Diesel Engine)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF

라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구 (A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine)

  • 정성식;황성일;임춘미
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine)

  • 이창희;이기형;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

바이오디젤유를 사용하는 직접분사식 디젤기관의 내구특성 (Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.32-38
    • /
    • 2004
  • To evaluate the durability of direct injection diesel engine using biodiesel fuel, a small D. I. diesel engine was operated on a blend(BDF 20) of 20% biodiesel fuel and 80% diesel fuel for 200 hours. Engine dynamometer test was performed at a load of 90% and a speed of 1900 rpm to monitor the engine performance and exhaust emissions. Engine performance parameters and exhaust emissions were sampled at 1 hour interval for analysis. The combustion maximum pressure and the crank angle at this maximum pressure as a combustion variation factor were considered to study the combustion characteristics of BDF 20 in diesel engine during durability test. As the results, the standard deviations and errors of combustion variation factors on BDF 20 were very little and combustion characteristics were very stable during the durability test. BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with special increase of nitrogen oxides compared to diesel fuel. There was no also unusual change in engine oil composition from using BDF 20. Most of engine parts were clean and showed little wear, but soots were detected around the hole of fuel injector when BDF 20 was used in direct injection diesel engine for 200 hours.

直接噴射式디이젤機關 의 燃燒性 向上 에 관한 考察 (The Study for Improving the Combustion in a Direct-Injection Type Diesel Engine)

  • 방중철
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.257-262
    • /
    • 1983
  • The performance of a direct-injection type diesel engine often depends on the shape of combustion chamber, strength of swirl or squish, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In this paper, the relation betweeen the flame progress and the performance of engine was clarified by changing variously the combustion process in cylinder with a special method, and thus the measures for improving the combustion were indirectly examined. Namely it was investigated what effect the flame progress in cylinder, which was varied with the locality of the lean premixture injected by the auxiliary injection method using an auxiliary injection nozzle in advance at the place where main spray was injected later, has on the engine output, the exhaust smoke density and the NO concentration in exhaust gas.