• Title/Summary/Keyword: Direct System Identification Method

Search Result 79, Processing Time 0.028 seconds

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.

A Study on the New Partial Discharge Pattern Analysis System used by PA Map (Pulse Analysis Map) (PA Map(Pulse Analysis Map)을 이용한 새로운 부분방전 패턴인식에 관한 연구)

  • Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1092-1098
    • /
    • 2007
  • Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.

An Evaluation of Vitek MS System for Rapid Identification of Bacterial Species in Positive Blood Culture (혈액배양 양성검체에서 패혈증 원인균 신속동정을 위한 Vitek MS 시스템의 유용성 평가)

  • Park, Kang-Gyun;Kim, Sang-Ha;Choi, Jong-Tae;Kim, Sunghyun;Kim, Young-Kwon;Yu, Young-Bin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.407-412
    • /
    • 2017
  • The aim of this study was to shorten the time required for subculture and bacterial identification and obtain a simple and rapid identification method for new test methods for bloodstream infections. The following results were obtained using a mass spectrometer. In Vitek 2, 208 (81.8%) cases were well-identified and 45 isolates were not identified in blood cultures. Among 208 cases, 146 (57.5%) were Gram positive bacteria and 108 (42.5%) were Gram negative bacteria. In total, 233 were identified to the species level and 21 were identified to the genus level. The identification error was found to be Propionibacterium acnes as Clostridium bifermentans. The accuracy of Enterobacteriaceae, glucose non-fermentative bacilli (GNFB), and staphylococci were 81/83 (97.6%), 12/15 (80.0%), and 72/85 (84.7%), respectively. The concordance rate of Vitek 2 and Vitek MS by the direct method was 81.8% and 45 isolates were not identified. Most of the unidentified bacteria were Gram positive bacteria (N=37). The Gram positive bacteria were streptococci (14), coagulase-negative staphylococci (CNS) (11), enterococci (3), Staphylococcus aureus (2), Micrococcus spp. (2), Bacillus spp. (2) and Actinomyces odontolyticus, Finegoldia magna, and Peptostreptococcus spp. The results reporting time was reduced to 24~72 hours compared to the conventional method. The rate of identification of the aerobic and anaerobic cultures was similar, but the use of an anaerobic culture did not require a dissolution process, which could shorten the sample preparation time. These results suggest that the method of direct identification in blood cultures is very useful for the treatment of patients. In further studies, it might be necessary to further improve the method for identifying streptococci and CNS, which were lacking in accuracy in this study.

Reconfigurable Flight Control Law based on Model Following Scheme and Parameter Estimation (매개변수 추정 및 모델추종 적응제어기법을 이용한재형상 비행제어시스템 연구)

  • Mun, Gwan-Yeong;Kim, Yu-Dan;Lee, Han-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.67-73
    • /
    • 2006
  • In this paper, a reconfigurable model following flight control method is proposed based on direct adaptive scheme using parameter estimation. Adaptive control scheme updates the control gains to make the system output follow the reference output even when fault occurs. By adopting the frequency domain parameter estimation method, system changes by the fault can be estimated. Recursive Fourier transformation is used for system identification. Using recursive Fourier transform, the proposed adaptive control algorithm guarantees the system stability and improves the system characteristics. To evaluate the performance of proposed control method, numerical simulations are performed.

An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

  • Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.45-60
    • /
    • 2019
  • This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

Simplified Rotor and Stator Resistance Estimation Method Based on Direct Rotor Flux Identification

  • Wang, Mingyu;Wang, Dafang;Dong, Guanglin;Wei, Hui;Liang, Xiu;Xu, Zexu
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.751-760
    • /
    • 2019
  • Since parameter mismatch seriously impacts the efficiency and stability of induction motor drives, it is important to accurately estimate the rotor and stator resistance. This paper introduces a method to directly calculate the rotor flux that is independent of stator and rotor resistance and electrical angle. It is based on obtaining the rotor and stator resistance using the model reference adaptive system (MRAS) method. The method has a lower computation burden and less adaptation time when compared with other rotor resistance estimation methods. This paper builds three coordinate frames to analyze the rotor flux error and rotor resistance error. A number of implementation issues are also considered.

An improved cross-correlation method based on wavelet transform and energy feature extraction for pipeline leak detection

  • Li, Suzhen;Wang, Xinxin;Zhao, Ming
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.213-222
    • /
    • 2015
  • Early detection and precise location of leakage is of great importance for life-cycle maintenance and management of municipal pipeline system. In the past few years, acoustic emission (AE) techniques have demonstrated to be an excellent tool for on-line leakage detection. Regarding the multi-mode and frequency dispersion characteristics of AE signals propagating along a pipeline, the direct cross-correlation technique that assumes the constant AE propagation velocity does not perform well in practice for acoustic leak location. This paper presents an improved cross-correlation method based on wavelet transform, with due consideration of the frequency dispersion characteristics of AE wave and the contribution of different mode. Laboratory experiments conducted to simulate pipeline gas leakage and investigate the frequency spectrum signatures of AE leak signals. By comparing with the other methods for leak location identification, the feasibility and superiority of the proposed method are verified.

Hybrid vibro-acoustic model reduction for model updating in nuclear power plant pipeline with undetermined boundary conditions

  • Hyeonah Shin;Seungin Oh;Yongbeom Cho;Jinyoung Kil;Byunyoung Chung;Jinwon Shin;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3491-3500
    • /
    • 2024
  • In this work, the hybrid vibro-acoustic model reduction technique that is a physical-modal combined formulation is proposed to accelerate the finite element model updating process of the vibro-acoustic pipeline system. Particularly, the new formulation could provide an effective way of the model updating by preserving the physical DOFs for the direct calibration of the undetermined boundary conditions. The sensitivity based vibro-acoustic model updating is first conducted, and then the undetermined spring constant at the displacement boundary condition is then directly and effectively calibrated by using the proposed hybrid model reduction formulation. The proposed method is implemented in the real nuclear facility to evaluate its performance. In addition, an experimental implementation test using the inverse force identification process is also conducted to demonstrate the reliability of the generated vibro-acoustic FE model through the proposed method.

Design of Fuzzy Adaptive IIR Filter in Direct Form (직접형 퍼지 적응 IIR 필터의 설계)

  • 유근택;배현덕
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.370-378
    • /
    • 2002
  • Fuzzy inference which combines numerical data and linguistic data has been used to design adaptive filter algorithms. In adaptive IIR filter design, the fuzzy prefilter is taken account, and applied to both direct and lattice structure. As for the fuzzy inference of the fuzzy filter, the Sugeno's method is employed. As membership functions and inference rules are recursively generated through neural network, the accuracy can be improved. The proposed adaptive algorithm, adaptive IIR filter with fuzzy prefilter, has been applied to adaptive system identification for the purposed of performance test. The evaluations have been carried out with viewpoints of convergence property and tracking properties of the parameter estimation. As a result, the faster convergence and the better coefficients tracking performance than those of the conventional algorithm are shown in case of direct structures.

Identification of quantitative trait loci for root development during seedling stage in rice

  • Han, Jae-Hyuk;Chin, Joong Hyoun;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.103-103
    • /
    • 2017
  • Vigorous root growth at the seedling stage in dry direct-seeded conditions is considered as a critical trait because it is involved in seedling emergence, early vegetative vigour, nutrient uptake as well as drought tolerance. In this study, we performed QTL mapping using the recombinant inbred lines obtained from the cross between Tongil-type Dasan and temperate japonica TR22183 (DT-RILs) to identify QTL underlying early root development. TR22183, which was previously reported to have high nitrogen utility and cold tolerance, showed vigorous root growth at the seedling stage in semi-drought conditions. Root length, fresh weight and dry weight of TR22183 were significantly higher than in Dasan. By QTL analysis with genotyping-by-sequencing method, we identified two QTLs for root fresh weight (RFW) in chromosome 7 and root dry weight (RDW) in chromosome 8, explaining phenotypic variances of 13.5% and 10.6%, respectively. These QTLs would be used to develop rice varieties adapted to direct-seeded cultivating system.

  • PDF