• Title/Summary/Keyword: Direct Simulation Monte Carlo

Search Result 171, Processing Time 0.198 seconds

Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method (직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석)

  • Kim, Min-Gyu;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The interaction between hypersonic free stream and side jet flow at high altitudes is investigated by using the direct simulation Monte Carlo (DSMC) method. In order to alleviate the difficulty associated with the large density difference between the free stream and the side jet flow and to simulate the two flows simultaneously, a weighting factor technique is applied. For validation, the corner flow over a pair of plates perpendicularly attached is calculated with and without a side jet, and the results are compared with experiment. For a more realistic configuration, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet is injected into the free stream and the effect on the aerodynamic force and moment is observed at various flow angles. The lambda shock effect and the wake structure are studied in terms of the surface pressure differential. A higher interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

Rocket Plume Analysis with DSMC Method (DSMC 방법을 이용한 로켓 플룸의 해석)

  • Jeon, Woojin;Baek, Seungwook;Park, Jaehyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.54-61
    • /
    • 2014
  • In this study, a plume exhausted from rocket nozzle is investigated by using an unstructured 2-dimensional axisymmetirc DSMC code at various altitude. The small back-pressure to total-pressure ratio($P_b/P_o$) and large $P_b/P_o$ represent low and high altitude condition, respectively. At low altitude, the plume shows a typical complicated structure (e.g. Mach disk) of underexpanded jet while the high altitude plume experiences plain expansion. The various features of exhaust plume is discussed including density, translational/rotational temperature, Mach number and Knudsen number. The results shows that even at 20 km altitude where the freestream Knudsen number is small as $1.5{\times}10^{-5}$, the transitional and rarefied flow regimes can occur locally within the plume. It confirms the necessity of DSMC computation at low altitude.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.

Optimization Method for the Design of LCD Back-Light Unit (LCD Back-Light Unit 설계를 위한 최적화 기법)

  • Seo Heekyung;Ryu Yangseon;Choi Joonsoo;Hahn Kwang-Soo;Kim Seongcheol
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.3
    • /
    • pp.133-147
    • /
    • 2005
  • Various types of ray-tracing methods are used to predict the quantity measures of radiation illumination, the uniformity of illumination, radiation performance of LCD BLU(Hack-Light Unit). The uniformity of radiation illumination is one of the most important design factor of BLU and is usually controlled by the diffusive-ink pattern printed on the bottom of light-guide panel of BLU. Therefore it is desirable to produce an improved (ideally, the optimal) ink pattern to achieve the best uniformity of radiation illumination. In this paper, we applied the Welder-Mead simplex-search method among various direct search method to compute the optimal ink pattern. Direct search methods are widely used to optimize the functions which are often highly nonlinear, unpredictably discontinuous, and nondifferentiable, The ink-pattern controlling the uniformity of radiation illumination is one type of these functions. In this paper, we found that simplex search methods are well suited to computing the optimal diffusive-ink pattern. In extensive numerical testing, we have found the simplex search method to be reasonably efficient and reliable at computing the optimal diffusive-ink pattern. The result also suggests that optimization can improve the functionality of simulation tools which are used to design LCD BLU.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Daily Water Intake and Exposure Parameters Related to the Multi-route Exposure in Drinking Water (음용수의 섭취량 및 다경로 노출평가를 위한 노출변수 조사연구)

  • Chung, Yong;Shin, Dong-Chun;Park, Seong-Eun;Choi, Shi-Nai;Park, Seon-Mee
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.19-29
    • /
    • 1996
  • Human exposure to volatile compounds in tap water can occur from inhalation and dermal absorption as well as direct ingestion. The relative contribution to total human exposure from these pathways has been considered to be important especially for VOC's (volatile organic compounds). In an attempt to reduce the uncertainty of the risk assessment, it has been suggested that the exposure assessment process could be significantly improved by adopting Monte-Carlo simulation. However, there is no actual data in Korea for each exposure parameter to determine the level of exposure, and the distributional pattern. Therefore, we surveyed water use patterns and behavior related to multi-route exposure to VOC's in household tap water in Korea, and compared these values to the those in western countries. In the first survey, we calculated daily water intake using data from a sample of 1322 persons of several cities in Korea. In the second survey, we obtained questionnaire data on exposure time for showering, bathing and household activities, and tap water intake from 851households in Korea. In the last survey, we measured the exposure parameters (exposure time, water use rate etc.) related to showers, baths, toilets, dish washing, washing and cooking, and tap water intake was surveyed. Also, the subjects were measured their body weight, height and tidal volume, etc. A diary, a flow meter and a measuring cup were used to measure these values as precisely as possible. Average daily water intake was ranged 0.79-1.71 L/day for adults in three surveys. Tap water intake measured by log-sheet during one week in third survey was 1.26 (average), 1.98 L/day (90 percentlie), respectively. These results were comparable with results from EPA (1.4, 2L/day). The average amount of water used by housewives in the third survey was 515.0 $\pm$ 564.6L/day. In usual activity, the amount of water used in the bathroom, the laundry and the kitchen was 140.0 $\pm$ 538.9, 148.0 $\pm$ 174.5, 229.3 $\pm$ 205.4 L/day, respectively. Exposure parameters such as water intake rate, exposure duration, body weight, inhalation rates in surveyed data of Korean people differed from those published from western countries. This could be attributed to variations in lifestyle, dietary habits and physiological characteristics.

  • PDF

Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies (방사선비상시 내부피폭 신속 분류를 위한 휴대용 NaI 검출기의 계측효율 전산모사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Pak, Min Jung;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In case of radiation emergencies, radioactive materials released into environments can cause internal exposure of members of the public. Even though whole body counters are widely used for direct measurement of internally deposited radionuclides, those are not likely to be used at the field to rapidly screen internal exposure. In this study, we estimated the counting efficiencies of portable NaI detector for different size BOMAB phantoms using Monte Carlo transport code to apply handheld gamma spectrometers for rapid screening of internal exposure following radiological accidents. As a result of comparison for two counting geometries, counting efficiencies for sitting model were about 1.1 times higher than those for standing model. We found, however, that differences of counting efficiencies according to different size are higher than those according to counting geometry. Therefore, we concluded that when we assess internal exposure of small size people compared to the reference male, the body size should be considered to estimate more accurate radioactivity in the human body because counting efficiencies of 4-year old BOMAB phantom were about 2.4~3.1 times higher than those of reference male BOMAB phantom.

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method (직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구)

  • Kuk, Jung Won;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.649-657
    • /
    • 2019
  • Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.