DOI QR코드

DOI QR Code

Rocket Plume Analysis with DSMC Method

DSMC 방법을 이용한 로켓 플룸의 해석

  • Jeon, Woojin (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Baek, Seungwook (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jaehyun (Department of Aerospace and System Engineering, ReCAPT, Gyeongsang National University) ;
  • Ha, Dongsung (Advanced Propulsion Technology Center, Agency for Defense Development)
  • Received : 2013.12.11
  • Accepted : 2014.07.05
  • Published : 2014.10.01

Abstract

In this study, a plume exhausted from rocket nozzle is investigated by using an unstructured 2-dimensional axisymmetirc DSMC code at various altitude. The small back-pressure to total-pressure ratio($P_b/P_o$) and large $P_b/P_o$ represent low and high altitude condition, respectively. At low altitude, the plume shows a typical complicated structure (e.g. Mach disk) of underexpanded jet while the high altitude plume experiences plain expansion. The various features of exhaust plume is discussed including density, translational/rotational temperature, Mach number and Knudsen number. The results shows that even at 20 km altitude where the freestream Knudsen number is small as $1.5{\times}10^{-5}$, the transitional and rarefied flow regimes can occur locally within the plume. It confirms the necessity of DSMC computation at low altitude.

본 연구에서는 비정렬격자계를 사용하는 2차원 축대칭 DSMC 법을 사용하여 로켓 노즐에서 사출되는 플룸을 해석하였다. 오리피스의 출구 전압에 대한 배압의 비율이 높은 경우와 낮은 경우의 플룸에 대하여 해석을 실시하여 저고도와 고고도를 대표하는 두 가지 조건에서 플룸 유동의 차이를 관찰하였다. 저고도 플룸은 Mach disc 등 복잡한 유동 구조를 보인 반면 고고도 플룸은 단순 팽창만을 보였으며, 유동이 상류 방향으로 심하게 꺾였다. 또한 고도 20 km의 대기 조건에서 소형 로켓 노즐에서 사출되는 플룸에 대한 해석을 수행하여 연속체 해석 결과와 비교하였으며 과소팽창되는 로켓 플룸의 유동구조가 잘 나타났다. 또한, 플룸 내부에 국지적인 천이 유동이 발생할 수 있음을 확인하였다.

Keywords

References

  1. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 7th ed., John Wiley & Sons, Inc., New York, N.Y., U.S.A., 2001.
  2. Simmons, F.S., Rocket Exhaust Plume Phenomenology, The Aerospace Press, El Segundo, CA., U.S.A., 2000.
  3. Park, J.H., Kang, S.J., Kim, J.S., Baek, S.W. and Yu, M.J., "DSMC Analysis of Satellite Thruster Plume," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 29, No. 8, pp. 111-118, 2001.
  4. Lee, K.H., Lee, S.N., Yu, M.J., Kim, S.K. and Baek, S.W.7th ed., "Combined Analysis of Thruster Plume Behavior in Rarefied Region by Preconditioned Navier-Stokes and DSMC Methods," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 52, No. 177, pp. 135-143, 2009. https://doi.org/10.2322/tjsass.52.135
  5. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Carlendon Press, Oxford, Oxfordshire, U.K., 1994.
  6. Bird, G.A., "Direct Simulation and the Boltzmann Equation," Phyisics of Fluids, Vol. 13, No. 11, pp. 2676-2681, 1970. https://doi.org/10.1063/1.1692849
  7. Wagner, W., "A Convergence Proof for Bird's Direct Simulation Monte Carlo Method for the Boltzmann Equation," J. Statistical Physics, Vol. 66, Nos. 3/4, pp. 1011-1044, 1992. https://doi.org/10.1007/BF01055714
  8. Bird, G.A., "Monte Carlo Simulation in an Engineering Context," Progress in Astonautics and Aeronautics, Vol. 74, pp. 239-255, 1981.
  9. Bird, G.A., "Perception of Numerical Methods in Rarefied Gas Dynamics," Progress in Astronautics and Aeronautics, Vol. 118, pp. 211-226, 1989.
  10. Borgnakke, C. and Larsen, P.S., "Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture," J. Comput. Phys., Vol. 18, Issue 4, pp. 405-420, 1975. https://doi.org/10.1016/0021-9991(75)90094-7
  11. Rothe, D.E., "Electron-Beam Studies of Viscous Flow in a Supersonic Nozzle," AIAA J., Vol. 9, No. 5, pp. 804-810, 1971. https://doi.org/10.2514/3.6279

Cited by

  1. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179351