• Title/Summary/Keyword: Direct Sequence Code-Division Multiple Access(DS-CDMA)

Search Result 99, Processing Time 0.019 seconds

Generalized Combined Power and Rate Adaptations in DS/CDMA Communications over Fading Channels (페이딩 채널에서 직접 대역확산 부호분할 다중접속 통신을 위한 일반화된 혼합 전력/전송률 적응화 기법)

  • Lee, Ye Hoon;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.680-687
    • /
    • 2013
  • We investigate a generalized combined power and rate adaptation scheme in direct-sequence (DS) code-division multiple-access (CDMA) communications over Nakagami fading channels. The transmission power allocated to user i is proportional to $G^p_i$, where $G_i$ is the channel gain of user i and p is a real number, and the data rate (i.e., spreading gain) is jointly adapted so that a desired QoS is maintained. We analyze the average data rate of the proposed adaptation scheme subject to fixed average and peak transmission power constraints. Our results show that the proposed joint adaptation scheme provides a significant performance improvement over power-only and rate-only adaptation.

Mathematical modeling and performance analysis for the double-dwell serial search algorithm with a search window (탐색 창을 갖는 이중드웰 직렬 동기획득 방식에 대한 수학적 모델링 및 성능분석)

  • Lee, Seong-Joo;Kim, Jae-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.9-17
    • /
    • 1999
  • In this paper, we present a mathematical modeling and perform a performance analysis of double-dwell serial search algorithm, which has a search window concept, for pilot channel in DS-CDMA(Direct Sequence Code Division Multiple Access). We derive a code detection function, a false alarm function, a code miss function, and a mean code acquisition time for the performance analysis. We calculate the mean code acquisition time of the mathematical model in IS-95 forward link and compare it with that of the conventional search methods. The performance of the code acquisition system is also evaluated to investigate the effect of dwell times and search window size. The JTC channel model, which is a PCS channel model in North America, is used for the analysis. The numerical result shows that the mean code acquisition time of the double-dwell serial search algorithm with a search window is reduced by about 17%~25% than those of the conventional ones.

  • PDF

A Frequency Domain Equalization Algorithm for Fast Time-Varying Fading Channels

  • Tran, Le-Nam;Hong, Een-Kee;Liu, Huaping
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • Conventional frequency domain equalization (FDE) schemes were originally devised for quasi-static channels. Thus, such equalization schemes could suffer from significant performance degradation in fast-fading channels. This paper proposes a frequency domain equalization algorithm to mitigate the effect of fast time-varying fading. First, a mathematical expression is derived to quantify the total interference resulting from the time variation of the channel. Then, the proposed approach attempts to eliminate the effect of time-variations of the channel. This cancellation allows efficient use of the classical FDE structures in fast time-varying fading environments, although they are built upon the quasi-static channel model. Simulation results of bit-error-rate performance are provided to demonstrate the effectiveness of the proposed algorithm.

Multiple Finger Expansion for Blind Interference Canceller in the Presence of Subchip-Spaced Multipath Components

  • Quek, Tony Q. S.;Suzuki, Hiroshi;Fukawa, Kazuhiko
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • A blind interference canceller in the presence of subchipspaced multipath channels for direct-sequence code division multiple access (DS-CDMA) down-link system is considered. This technique is based on combining the existing blind interference canceller with a technique that involves assigning subchip-tap spacing to the Rake receiver. The proposed receiver minimizes the receiver’s output energy subject to a constraint in order to mitigate the multiple access interference (MAI) along each multipath component, and then suboptimally combining all the multipath components. Moreover, it is able to mitigate the mismatch problem when subchip-spaced multipath components arrive at the blind interference canceller. It is known that optimal combining techniques perform a decorrelation operation before combining, which requires both knowledge and computational complexity. In the following, we have adopted a simpler but suboptimum approach in the combining of the suppressed signals at the output of our proposed receiver. Computer simulation results verify the effectiveness of the proposed receiver to handle subchip-spaced multipath components and still suppresses MAI significantly.

Code Acquisition with Receive Diversity and Constant False Alarm Rate Schemes: 1. Homogeneous Fading Circumstance (수신기 다양성과 일정 오경보 확률 방법을 쓴 부호획득: 1. 균질 감쇄 환경)

  • Kwon Hyoung-Moon;Oh Jong-Ho;Song Iick-Ho;Lee Ju-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.371-380
    • /
    • 2006
  • The performance characteristics of the cell averaging(CA), greatest of(GO), and smallest of(SO) constant false alarm rate(CFAR) processors in homogeneous environment are obtained and compared when receiving antenna diversity is employed in the pseudonoise code acquisition of direct-sequence code division multiple access (DS/CDMA) systems. From the simulation results, it is observed that the CA CFAR scheme has the best performance and the GO CFAR scheme has almost the same performance as the CA CFAR scheme in homogeneous environment. In Part 2 of this paper, the CA, GO, and SO CFAR processors for code acquisition in nonhomogeneous environment are addressed.

Performance Analysis of MC-DS/CDMA System with Phase Error and Hybrid SC/MRC-(2/3) Diversity (위상 에러와 하이브리드 SC/MRC-(2/3)기법을 고려한 MC-DS/CDMA 시스템의 성능 분석)

  • Kim Won-Sub;Park Jin-Soo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.835-842
    • /
    • 2004
  • In this paper, we have analyzed the MC-DS/CDMA system with input signal synchronized completely through adjustment of the gain in the PLL loop, by using the hybrid SC/MRC-(2/3) technique, which is said to one of the optimal diversity techniques under the multi-path fading environment, assuming that phase error is defined to the phase difference between the received signal from the multi-path and the reference signal in the PLL of the receiver. Also, assuming that the regarded radio channel model for the mobile communication is subject to the Nakagami-m fading channel, we have developed the expressions and performed the simulation under the consideration of various factor, in the MC/DS-CDMA system with the hybrid SC.MRC-(2/3) diversity method, such as the Nakagami fading index(m), $the\;number\;of\;paths\;(L_p),$ the number of hybrid SC.MRC-(2/3) $diversity\;branches\;(L,\;L_c),$ the number of users (K), the number of subcarriers (U), and the gain in the PLL loop. As a result of the simulation, it has been confirmed that the performance improvement of the system can be achieved by adjusting properly the PLL loop in order for the MC/DS-CDMA system with the hybrid SC/MRC-(2/3) diversity method to receive a fully synchronized signal. And the value of the gain in the PLL loop should exceed 7dB in order for the system to receive the signal with prefect synchronization, even though there might be a slight difference according to the values of the fading index and the spread processing gain of the subcarrier.

Optimal Chip Rate of Power and Rate Adapted DS/CDMA Communication Systems in Nakagami Fading Channels (나카가미 페이딩 채널에서 전력 및 전송률 적응화 직접 대역확산 부호분할 다중접속 통신시스템을 위한 최적 칩률에 관한 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.128-133
    • /
    • 2010
  • We investigate the optimal chip rate of power or rate adapted direct-sequence code division multiple access (DS/CDMA) communication systems in Nakagami fading channels. We find that the optimal chip rate that maximizes the spectral efficiency depends upon both the channel parameters, such as multipath intensity profile (MIP) and line-of-sight (LOS) component, and the adaptation scheme itself. With the rate adaptation, the optimal chip rate is less than $1/T_m$, irrespective of the channel parameters, where $1/T_m$ is multipath delay spread. This indicates that with the rate adaptation, correlation receiver achieves higher spectral efficiency than RAKE receiver. With the power adaptation, however, the optimal chip rate and the corresponding number of tabs in RAKE receiver are sensitive to MIP and LOS component.

Performance Improvement of DS-CDMA System by Multi-User Interference Cancellation Techniques (다중접속간섭 제거기법에 의한 DS-CDMA 시스템의 성능 개선)

  • 최충열;홍주석;김봉철;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.506-519
    • /
    • 1999
  • An adaptive array antennal and a CCI canceller have been considered as techniques for cancelling Multi-User Interference(MUI) in Direct Sequence Code Division Multiple Access(DS-CDMA) system. These techniques have different problems respectively in the process of cancelling MUI as the number of users increases. For that reason, the scheme which can cancel MUI effectively by compensating for the problems of each of the techniques has been required. For the scheme, the technique to connect an adaptive array antenna and a CoChannel Interference(CCI) canceller in cascade form has been studied. In the existing study about the cascade connection method, the effect of cancelling MUI about two interference signals is analyzed, but the analysis for the quantitative BER(Bit Error Rate) improvement according to the number of users is not considered. Therefore, in this paper, we have analyzed the degree of BER performance improvement quantitatively according to the number of users by introducing the receiving system, which connects an adaptive array antenna and a CCI canceller to a DS-CDMA system in cascade form. For the method of analyzing the performance, we have performed the theoretical analysis and the simulation, considering the case of adopting only an adaptive array antenna and of cascade connection respectively, and having compared and analyzed the results. From the results, it is confirmed that in the case of adopting only an adaptive array antenna, the problems occur in the process of cancelling MUI according to the number of users and the receiving direction of interference signals, and can be compensated by the cascade connection method. In conclusion, we have known that MUI is cancelled effectively by using the cascade connection method, and the much better BER performance improvement is obtained.

  • PDF

A Study on Interference Cancelling Receiver with Adaptive Blind CMA Array (적응 블라인드 CMA 어레이를 이용한 간섭 제거 수신기에 관한 연구)

  • 우대호;변윤식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.330-335
    • /
    • 2002
  • In the direct sequence code division multiple access system, the problem of multiple access interference due to multiple access is generated. A interference cancelling receiver is used to solve this problem. The conventional interference cancelling receiver is structure of successive interference canceller using antenna array. In this structure, the difference of between method I and method II depends on updating weight vector. In this paper, the adaptive blind CMA array interference cancelling receiver using cost function of constant modulus algorithms is proposed to update weight vector at conventional structure. The simulation compared the proposed interference cancelling receiver with two conventional interference cancelling receivers by signal to interference ratio and bit error rate curve under additive white Gaussian noise environment. The simulation results show that the proposed receiver has about the gain of SIR of 1.5[dB] more than method I which is conventional receiver at SIR curve, and about the gain of SIR of 0.5(dB) more than method II. In BER curve, the proposed IC receiver about the gain of SNR of 2[dB] more than method I and about the gain of SNR of 0.5[dB] more than method If, Thus, the proposed interference cancelling receiver has the higher performance than conventional interference cancelling receivers.