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Multiple Finger Expansion for Blind Interference
Canceller in the Presence of Subchip-Spaced Multipath
Components

Tony Q. S. Quek, Hiroshi Suzuki, and Kazuhiko Fukawa

Abstract: A blind interference canceller in the presence of subchip-
spaced multipath channels for direct-sequence code division multi-
ple access (DS-CDMA) down-link system is considered. This tech-
nique is based on combining the existing blind interference can-
celler with a technique that involves assigning subchip-tap spac-
ing to the Rake receiver. The proposed receiver minimizes the re-
ceiver’s output energy subject to a constraint in order to mitigate
the multiple access interference (MAI) along each multipath com-
ponent, and then suboptimally combining ali the multipath compo-
nents. Moreover, it is able to mitigate the mismatch problem when
subchip-spaced multipath components arrive at the blind interfer-
ence canceller. It is known that optimal combining techniques per-
form a decorrelation operation before combining, which requires
both knowledge and computational complexity. In the following,
we have adopted a simpler but suboptimum approach in the com-
bining of the suppressed signals at the output of eur proposed re-
ceiver. Computer simulation resulits verify the effectiveness of the
proposed receiver to handle subchip-spaced multipath components
and still suppresses MALI significantly.

Index Terms: Blind interference canceller, rake, MAI, mismatch
problem, subchip-spaced multipath channels.

I. INTRODUCTION

Direct-sequence code division multiple access (DS-CDMA)
communication systems have attracted considerable attention as
one of the most promising multiplexing technologies for future
cellular telecommunications services, such as personal commu-
nications, mobile telephony, and indoor wireless networks [1]-
[3]. The advantages of DS-CDMA include superior operation in
multipath environments, flexibility in the allocation of channels,
and increased capacity in fading channels. However, the capac-
ity of DS-CDMA is interference-limited and the ability to re-
move co-channel interference from other users sharing the same
spectrum plays an important factor in the overall system capac-
ity. It has been demonstrated that multiuser detection provides
very substantial performance gains over conventional detection
schemes [4]-[6]. Most of the multiuser detection schemes pro-
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posed in recent years are inherently aimed for uplink [7]-[11].
However, it is obvious that mobile receiver cannot accommodate
the same degree of computational complexity.

Adaptive linear receivers based on the linear minimum mean
squared error (MMSE) criterion are proposed for the down-link
of DS-CDMA systems [12]-[15]. These receivers require only a
training sequence of symbols transmitted by the desired user and
a coarse knowledge of the timing of the desired user, and can
be implemented adaptively using standard algorithms such as
least mean squares (LMS) or recursive least squares (RLS) {16].
After the training phase, the receivers can continue to adapt in
decision-directed mode, in which symbol decisions made by the
receiver are fed back for further adaptation. However, these re-
ceivers are vulnerable to sudden channel variations and rapidly
fading channels [17]. Therefore, it is necessary to develop blind
adaptive mechanisms that do not require knowledge of the sym-
bol sequence of the desired user [18])-[21]. These blind re-
ceivers are single-user type receivers with no knowledge beyond
that required for implementation of the conventional matched
filter detectors for a particular desired user. The blind method in
these receivers blindly adapts the linear MMSE receiver based
on minimizing the receiver output energy subject to a constraint.
In [18] and [21], our blind interference canceller is known as or-
thogonalizing matched filter (OMF) and we define a constrained
minimum mean square (CMMS) criterion to minimize the re-
ceiver output energy subject to a constraint of not suppressing
the desired user signal energy. The key to an optimal minimiza-
tion lies in the estimation of a vector, which we define as steering
vector. In additive white Gaussian noise (AWGN) environment
without any multipath, OMF approaches a blind solution with
MMSE performance using a priori assumed steering vector.

In order to exploit multipath diversity, these blind interference
cancellers are combined with Rake receivers, such that the mul-
tipath combining is carried out after the interference suppression
[22]-(24]. Like conventional Rake receivers, blind interference
cancellers with Rake are unable to resolve subchip-spaced mul-
tipath components [25], [26]. These unresolvable components
not only result in suboptimum multipath combining, but also
lead to serious performance degradation due to self-cancellation
of the desired signal. This can be explained by the fact that these
subchip-spaced muitipath components become mismatch com-
ponents [27]. In [28], it is shown that even a small mismatch
error can cause a significant performance degradation.

The present contribution overcomes the above limitations by
proposing a simple technique to handle subchip-spaced mul-
tipath components in blind interference cancellers [29]. This
technique termed multiple finger expansion (MFE), involves as-
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signing subchip-tap spacing in the Rake receiver. This approach
is similar to the resolution reduction technique proposed in [30].
By combining MFE with OMEF, the new receiver is termed MFE-
OMF, and it is able to suppress multipath and multiple access in-
terference blindly as well as to achieve multipath diversity, with-
out any self-cancellation of the desired signal. The structure of
MFE is chosen to capture sufficient desired signal energy within
the vector space spanned by the fingers of MFE, while reducing
any uncaptured desired energy from appearing in the orthogonal
vector space generated by MFE-OMF. We will assume that the
code tracking circuit is able to track chip-spaced multipath com-
ponents only and the information is known at the receiver. Al-
though subchip-spaced multipath delays could also be estimated
[31], [32], this would greatly increase the computational com-
plexity of MFE-OME. In this work, we will assume a general
structure of MFE without any knowledge of the subchip-spaced
multipath delays.

Although the signals at the output of MFE-OMF are corre-
lated, it is still possible to produce diversity gains by using max-
imal ratio combining (MRC). Nevertheless, improved perfor-
mance can be obtained by using other optimum combining tech-
niques to whiten the signals at the output of MFE-OMF [33],
[34]. However, these techniques are impractical since they are
only optimal if the correlation matrix is completely known to the
receiver and computational intensive operations are required. In
the following, we adopt a suboptimum approach by simply com-
bining the outputs from MFE-OMF using MRC only. The rest
of the paper is organized as follows. In Section II, the system
model is presented. Our proposed receiver is developed in Sec-
tion HI. In Section IV, our suboptimum mulitipath combining
coupled with detection is discussed. Some computer simulation
results are presented in Section V. Finally, Section VI contains
the conclusion.

1II. SYSTEM MODEL

A complex baseband signal model for DS-CDMA down-link
transmission is considered with K users. Without loss of gen-
erality, the desired user is assumed to be user number 0. The
i-th data symbol for user k, by (¢), is spread by the spreading
waveform ¢y (t). Thus, the transmitted signal of user k can be
expressed as

= Ex Z bi(i)cr (t — iT),

1=—0C

where Ej is the average symbol energy, and T is the symbol
interval.

The spreading waveform cy (¢) for the k-th user is shaped with
a chip shaping filter p(¢) and it can be written as

N.—1

Z uk(n)p(t — n'T,), (D

n’'=0

c(t) =

where ui(n’) is the spreading signature of the k-th user, and
T. is the chip interval. N, is the processing gain, such that
N. =T/T.. The chip pulse waveform p(t) is chosen to be the

l r"]p)Ut A1) Qutpt
) — ‘
— Oor?bmer )
or
Finger .
Combiner ()
for
Finger
A
]F Coefficient
Control
i)
Wiag () Coefficiert
MY ontrol

j

General structure of MFE-OMF.

Fig. 1.

square-root raised cosine pulse with a roll-off factor of o. With-
out loss of generality, the spreading waveform is normalized so
that [*_|cx(¢)[2dt = 1.

The multlpath propagation channel from the base station to
the mobile station can be characterized by the baseband channel
impulse response

Z Bali)

where D is the total number of multipaths. 34(7) is the complex
channel coefficient of the d-th path when ¢-th data symbol is
transmitted. 74 is the path delay for the d-th path. The maximum
delay spread of the channel model considered is (D — 1)T, and
it is known at the receiver.

The received signal can be expressed as

§(t — 14), (2)

oo K—-1D-1

Z Z Z Bali)sk(t — 74) + n(t), 3)

i=—oc k=0 d=0

rit) =

where n(t) is a low-pass equivalent of the additive white Gaus-
sian noise with double-sided power spectrum density Ny /2.

At the receiver, the received signal in (3) is sampled at a rate
of 2/T,. and the discrete-time received signal can be expressed
as

K—-1D-1 T
(ZT+J— \/Ekﬁd(i)bk(i)ck(ji )
k=0 d=0
T:
+n(iT+j7),

where the sampling instant is i7" + ] cand 0 < j < 2N, - 1.

III. PROPOSED RECEIVER

A. Structure of MFE-OF

Fig. | shows the general structure of MFE-OMF. MFE-OMF
consists of a bank of M matched filters matched to each replica
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of the desired signal, and an adaptive filter bank to mitigate the
MALI associated to all the replicas. The structure of MFE is cho-
sen such that it is able to capture sufficient signal replicas of the
desired signal within the vector space spanned by the M fin-
gers. At the same time, it can also reduce any residual energy
from the desired signal from appearing in the orthogonal vector
space spanned by the adaptive filter bank. The adaptive filter
bank is termed as matched filter group (MFG) and it is designed
to extract the MAI and noise only.

At MFE, each finger is defined as the spreading waveform of
user 0 assigned with a finger delay of A,,. The m-th finger of
MEFE can be expressed as

N.—1
En(t) = > uo(n)p(t —n'Te ~ Ap)
n’=0
where
_ (m — 1)Tc
Am =011

for 1 < m < M. Sampling these waveforms at T./2 gives

& = [m) -

] In order to generate the im-
pulse response vectors of MFG {¢&;}2Y i=ar41> We first assume
that these vectors are a set of arbitrary random vectors. By us-
ing the Gram-Schmidt orthonormalization, the impulse response

vectors of MFE and MFG are regenerated as follows

a; = S forl =1,
lca |l -
EL—Z(a,ai)ai
a; = = forl > 1,
1&-3 (¢ .a:)a:

i=1

where (EL, ai) represents the inner product of ¢; and a;. The
vectors sets {a;}}, and {a;}}"s, 41 are the impulse response
vectors of MFE and MFG, respectively. With the vector spaces
spanned by these orthonormal basis, MFG will only capture
MALI and noise.

The output of the [-th filter at the 7-th instant can be written as

K—1D~12N.—
x1(7) Z Z ﬂd (i)/Erbi(i)ck J— — 1a)a(J)
k=0 d—0 ;=0
+7(2), “

where 71; (1) is the discrete filtered noise component from the [-th
filter. By rearranging the 2/N. x 1 vector given by the observa-
tions in (4), we can get M sets of (2N, — M + 1) x 1 vectors.
Using vector notation, each (2N, — M + 1) x 1 vector corre-
sponds to a OMF with respect to m-th finger of MFE and it is
given by

XH () = w3y, (0)] (5)
where ¥ represents Hermitian conjugate and transposition. The
output sample from m-th finger is z,,(7) and the MFG output
samples are {xl}leH

[ (@), 2R 2 (D),
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Expanding (5) using (4) gives
Xn(i) = G EH(1)b(i) + 1y, (5),

with the correlation matrix G, given by

gi0 g1,Kk-1
92,0 T 92, k-1
Gm = . . . 4
9aN, -M+1,0 9oN.—M+1,K-1

with g, = [gg,k,--,gfk 1] and1<q< (2N, -~ M +1).
The element of g, ; can be expressed as

2N:-1 T .
Yo (3 — Ta)am(d) forg=1
d =0
9g.k = 21]Vc~1 T '
> ck(is — Td)om+q—1(j) forg>1.
j=0

The energy matrix F and the multi-channel coefficient matrix
H (i) are given by

FE = diag(Eo, E2, e ,EKA1),
H(i) = h(i)lk,
where Ej, = vEpIp and h” (3) = [Bo(d),- -, Bp-1()]. I

and Iy are defined as D x D and K x K identity matrix, re-
spectively. The data sequence vector b(%) is given by

b7 (i) = [bo(3),- -+, br—1(4)]
and from (4) the noise vector 1, () is given by
T (i) = 3w, ()] -
The output samples vector X, (4) in (5) is fed into the com-
biner for the m-th finger, where the outputs from MFG are adap-
tively weighted to remove the MAI present in the fingers of

MFE by the constrained minimum mean square (CMMS) crite-
rion [18], [21]. The output from m-th combiner y,, (%) is given

by
ym(i)

OB TIRTORIER

=WEX..(9), (6)

where

H _ * * *
Wm - [wm,O’wm,lv e 7wm,2chM] .

B. CMMS Criterion

The CMMS criterion minimizes the output energy {|ym (i)|?)
under a constraint [18], [21]. This constraint keeps the energy
of the desired signal present in the m-th finger constant and pre-
vents self-cancellation of the desired signal in the minimization
process. The constraint is defined as

wlir, = @)
where Ty, isa (2N, — M + 1) x 1 vector. The constraint above
is somewhat similar to that of the minimum variance distortion-
less response (MVDR) beamformer {35]. In beamforming, T
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is known as the array propagation vector that contains the infor-
mation of the angle of arrival of the desired signal. However, in
MFE-OMF, T, is defined as the steering vector and it contains
the information of the distribution of the desired signal energy
in the output samples vector in (5).

The cost function J(™ is defined by

J(m)

(IWEX (i) + A (WET,, — 1)
WER, W, + A (WHT,, — 1),

where R,, = (X ,,,(i)X (1)) and A, is a Lagrange multiple.
By solving §.J(™)/ 6W, = 0 subject to the constraint defined
in (7), the solution W, is

—H .
Wm = _/\mRm T, 3

-1
Am = (Tf,{R;le) ,
and its minimum energy Jr(nrfn) becomes

min

I WERW,, = (Tf,{R;}Tm) -

(m)

On the other hand, the optimum Wiener solution W,/ is
given by

w) =RV, ©)

opt T
where V,,, = (X ,,,(i)2{ (1)) represents the crosscorrelation be-
tween X, (¢) and the desired signal component zq (%) in X ,, (2).
zo(7) is purely the product of the transmitted desired data sym-
bol bg(7) and the channel impulse response in (2). This is a time
varying component and is unknown a priori.

In order for W ,,, = W(()T;t), T, has to satisfy the relationship
T, = KV, where k is any nonzero complex constant. How-
ever, V,,, 1s unknown a priori. Therefore, a blind optimization
with an approximated T',,, can be implemented in MFE-OMF as
follows

T,=T=[10---0 forl<m<M.

Based on this approximation, the solution in (8) will converge to
the optimum Wiener solution in (9) as long as no desired signal
exists in MFG.

C. Adaptive Algorithm

The adaptive algorithm employed here is the Recursive
Least Squares (RLS) algorithm subject to the constraint in (7).
Hence, we termed this algorithm as Constrained Recursive Least
Squares (CRLS) algorithm. The main reason for choosing RLS
algorithm rather than LMS algorithm is that the convergence
rate of the RLS algorithm is typically an order of magnitude
faster rather than that of the LMS algorithm [18], [21]. The
recursive equations to update the combining coefficients vector
W, are

P,G) = X'P,Gi-1)

AP - DX () X () P (i — 1)

1+ 21 XE P (i — D)X 0 (3)
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Fig. 2. Suboptimum diversity combining with detection.

, P ()T
VT T,
ym(z) = Wm(l - 1)Xm(7')a

where P,,(i) = R, (i) and X is the forgetting factor. The
derivation above utilized the relationship as shown below

R,(i) = ixi—kxm(k)XZ(k)
k=1
= ARn(i—1)+ X)X (@),

and in order to initialize the algorithm, the below values are set

Pn(0) = &,
T,
Wan(0) = —po—,
©) =

where 4 is a small positive constant.

IV. SUBOPTIMUM DIVERSITY DETECTION

The diversity receiver structure collects the useful signal en-
ergy after interference suppression from each finger in (6) and
then suboptimally combines the collected energies to make a
final decision on the received data symbol. Fig. 2 shows the
block diagram of the suboptimum diversity combining with de-
tection. Since the receiver is only blind in terms of interfer-
ence cancellation, we still need to combine each of the sup-
pressed multipath components together for data detection. In
general, we can employ either non-coherent combining or co-
herent combining. In the former, it is used with differential
detection and the non-coherent combining can be expressed as
Zfr/{:l Yy (i — Lyym (7). In the latter, the coherent combining
requires some state information to perform data detection. In our
paper, we have employed the latter and our combining algorithm
is based on the coherent detection with predictive carrier recov-
ery using Maximum Likelihood Sequence Estimation (MLSE)
[36]. Due to the high correlation between adjacent samples, we
have used MLSE and the whole transmitted sequence has been
taken into account in order to minimize the probability of error.
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Unlike the non-coherent combining mentioned above, our com-
bining algorithm will require preamble and postamble symbols
for both channel estimation and MLSE sequence detection.

In the above communication system, we consider the trans-
mission of Az = 2% possible data sequences. According to the
maximum likelihood (ML) decision rule, the likelihood function
of the observation y, conditioned on [-th transmitted informa-
tion hypotheses, b(()l) is to be maximized

<yww-—nmxmyw”

such that by = [30(1), -+, bo(T))™ is the most likely transmit-
ted data sequence of the desired user. In a communication link
with M path diversity, the likelihood function becomes

M
Ny =TT plynmIbd).
m=1

The above function is valid if there is no correlation between
{y1(2), - -, yar(9)}. Since we know that the outputs from MFE-
OMF are correlated, we will obtain a suboptimum combining
performance using the above function.

Let £(1,%) = {ym(1), - -, ym(i), bél)} represent the observa-
tion up to time ¢ and hypotheses [. By repeated application of

the definition of a conditional pdf to p(ym|bél)), the following

is obtained [37]

l
P(y1»"',yM|bé)

(Y, |bS (10)

z
N =T plum@lew.i - 1),

The term p(ym (£)]€(l,7 — 1)) is the pdf pertaining to the one-
step prediction of the received sample y,,(7), given the past
received signal sequence {ym, (1), -, ym(i — 1)} and the in-
formation hypothesis b(()l) up to the present. By assuming that
Y,,, (1) is a complex Gaussian distributed i.i.d. random variable,
we can also assume that p(yy, (¢)|£(1, ¢ — 1)) is Gaussian dis-
tributed with conditional mean 7,,,({,%) and variance o7, (i),
given by

With the assumption that the data sequence bél) has been
transmitted, the mean ¥,,, ([, 7) can be expressed as

G (L)
= Elym()El i —1)] =050 E [hn ()€ — 1)),

B (141)

where ﬁm(l,i) is the optimal linear prediction estimate of
hm(i). The estimate may be obtained by using the estimator
equation of an 7-th order linear prediction as follows [16]:

A
R (1,1) =3 £(0)be " (i = om0 = J),
j=1
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where f; (i) are the filter weights. Note that T (1,1) is data de-
pendent and needs to be calculated for every possible hypothe-
ses. The filter weights { f;(¢)} can be pre-computed and used for
all [ hypotheses. In a stationary or slowly fading channel { f; (i)}
can be truncated by a time independent linear prediction filter of
order N,y, such that f; = N_'. The channel estimate ﬁm(l . 1)
then becomes

ZN s (i = )ym(i — 4). (11)

Note that the variance o2 ,, is not data dependent. Taking the
P

y,m
logarithm in (10), the decision metric becomes

-~ 2
~hm(L, )| ,

I M
=33 [ @um0)

i=1m/=1

where the factors which are constant and independent of ! have
been removed. Minimizing A(l, T) over all possible hypotheses
[ is equivalent to the ML decision rule

= 1T
Apin = m}&( )5

where the MLSE approach minimizes the Euclidean distance
between y,,, (¢) and the channel estimate in respect to all possible
hypotheses [ of the transmitted data sequence. The prohibitive
high complexity of the MLSE detection due to the exponential
growth of A7 can be reduced by employing the Viterbi algo-
rithm. This is equivalent to the case of equalization of channels
with inter-symbol interference by MLSE detection [37].

Let A¢(i) denote the survivor path up to sample ¢ at a partic-
ular state, that is the metric with the minimum distance entering
at this state is defined as

Ay(i) = g%{A(l’i)}’

where A; is the number of hypotheses entering this state up to

sample . Consider that this survivor path extends to sample
i + 1, we compute the metric to the next possible state

Alli+1)

M
(@) + 3 [ + Dymi+1)

m=1

2

— A, — Am(li+ 1)

At each state, there are two branches entering it , such that
the one with the larger metric is discarded, leaving one survivor
path per state. After a delay of 7 symbols, only one survivor
path exists, which yields the estimated desired data sequence
l/;o. Hence, we are able to coherently combine the outputs from
MFE-OMF in a suboptimum manner. Although this subopti-
mum method suffers a performance loss due to the correlation
between the outputs from MFE-OMEF, it is simpler and practical
compared to other optimum techniques [33], [34].
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Fig. 3. BER versus 7 in the static environment.

V. SIMULATION RESULTS

A. Simulation Conditions

We examine a bit rate of 10 kbps DS-CDMA system with
N, = 16. The roll-off factor « of p(t) in (1) is 1.0. The mutual
correlation of users’ spreading signatures used is less than 0.25
[21]. Perfect down-link power control is assumed to maintain
equal average receiving power from respective users. The burst
sequence is made up of 64 data symbols and S preamble and
postamble symbols respectively. The preamble and postamble
symbols are used to determine the initial and final states for co-
herently detecting the burst sequence by using MLSE. The order
of the linear prediction filter NV,, used in (11) is 4.

Our channel model is based on the uniform profile with two
paths, one direct path and one delay path with delay 7. Al-
though modeling the path delay 71 as independently random
variable may reflect more accurately the practical situation,
fixed path delay 7 leads to a tractable analysis which accu-
rately reflects the quantitative effects of the timing errors in our
proposed receiver. For simplicity, the maximum delay spread
considered is T, and it is known at the receiver. In the static en-
vironment, the path gains of the two multipath components are
fixed at 1/+/D and the two paths are mutually 7 /2 out of phase.
These parameters are particularly designed to verify the effec-
tiveness of MFE-OMF under severe condition in static environ-
ment. Whereas in the frequency selective fading environment,
the two multipath components undergo independent Rayleigh
fading. Simulations are allowed to run long enough for the tap
weights to converge before errors are counted.

B. Propagation Delay Performance

We first illustrate the BER performance of MFE-OMF with
M = 2,3,5 in static environment versus propagation delay in
Fig. 3. The number of active users is K = 8 and E},/Ny = 8
dB. The performance of OMF [21] is extremely poor with the
BER range remaining above 102 for 7; = 0.125 T, and above.
Hence, we can see that OMF is very sensitive to mismatch prob-
lem. When M =2, MFE-OMF operates well at 7; =0 and 1.0 7
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Fig. 4. Convergence characteristics of MFE-OMF in static environment.
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Fig. 5. Convergence characteristics of MFE-OMF in fading environment.

and degrades very much at 0.5 T, whereas for M = 3, it de-
grades at 7y = 0.25 and 0.75 T,.. These performance degradation
is due to the self-cancellation problem when MFE is unable to
fully capture the desired signal replicas, resulting in the appear-
ance of residual desired signal energy in MFG. However, for M
=5, MFE-OMF operates well over the whole delay spread from
71 =0 to 1.0 T,.. This shows the effectiveness of increasing the
number of subchip-spaced fingers. In addition, the performance
of MFE-OMF is still acceptable despite of the suboptimum di-
versity combining.

C. Convergence Characteristics

Fig. 4 shows the initial convergence characteristics of MFE-
OMF in static environment. The number of active users is K =
8 with 7 = 0.5 T, assigned to each user and F, /Ny is 8 dB. The
performance measure plotted here is the BER versus number of
iteration (burst). In static environment, the performance of M =
2 is extremely poor with BER remaining above 107! since the
residual desired signal appears in MFG. M =5 converges well
as expected since MFE sufficiently captures the energies of the
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desired signal replicas.

On the other hand, Fig. 5 shows the initial convergence char-
acteristics of MFE-OMF in frequency selective fading environ-
ment. The number of active users is K = 8 with 7; = 0.5 T as-
signed to each user and E}, /Ny is 20 dB. The maximum doppler
frequency is 40 Hz and the performance measure is similar to
that in Fig. 4. The BER of M = 2 remains above 10~2 and it
can be seen that the MFE-OMF does not degrade as badly as
in the static environment even with the same number of fingers.
This is because the multipath components fade independently in
the frequency selective fading channels. In frequency selective
fading environment, each multipath component of the desired
user corresponds to its own distinct eigenvector [27]. Hence,
the appearance of the residual desired signal in MFG does not
affect the performance as badly as in the static condition.

D. User Capacity

We next consider the user capacity of MFE-OMF in static
environment for M = 3 and 5. =, = 0.25, 0.5, and 1.0 T, are
assigned to each user k in three different simulations. The per-
formance measure is the BER versus number of active users and
it is plotted in Fig. 6. While M = 3 is seen to be better than M
=5atm =0.5and 1.0 T, it is still limited by the unexpanded
residual desired signal that appears in MFG, which leads to per-
formance degradation in other delay time 7;. At = 0.25 T,
M =5 outperforms M =3 up to 14 users. If the acceptable BER
is 1073, then about 5 users can be supported with M = 5 with
Ey, /Ny of 8 dB. However, if the acceptable BER is 1072, then
both M =5 and M = 3 can support about 13 users.

E. BER Performance

The performance of MFE-OMEF in static environment is stud-
ied with K = 8 and 71 = 0.25 T, for each user. The simulated
BER performance is plotted in Fig. 7. M = 2 performs poorly
due to mismatch problem. At low Fy,/Ny, M =3 and M =
5 have almost similar performance. However, as Ey, /Ny in-
creases, the BER performance of M = 3 degrades compared to
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M = 5. This is because as F, /Ny increases, the residual desired
energy that appears in MFG gets stronger and self-cancellation
becomes significant. In addition, under the same conditions as
in Fig. 7, the BER performance of 5 Finger MFE-OMF with dif-
ferent system capacity is plotted in Fig. 8. The number of active
usersis K =1, 8, 12 ,and 16. It can be observed that in the single
user case, the BER performance of M =5 degrades about 1 dB
compared to the single-user theoretical BER for BPSK coherent
detection. As the number of users increases, the BER perfor-
mance of M =5 is degraded by the increase in MAL When the
allowable BER is less than 10~2, M =5 can support 12 users,
which corresponds to 0.75 times the processing gain of 16, with
a degradation of 1.5 dB.
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F. Fading Performance

In Fig. 9, the BER performance of 5 Finger MFE-OF ver-
sus maximum Doppler frequency fp for K = 8, Ey, /Ny = 20
dB, and 71 = 0.5 T} is shown. The theoretical average BER per
branch, P. = 3/4(E,/Ny)?, for a 2 branch diversity with max-
imal ratio combining is plotted for comparison. We can see that
the MFE-OMF with suboptimum diversity combining performs
worse than the theoretical bound. This gap can be narrowed by
using optimum techniques in [33] and [34] at the expense of ad-
ditional computational complexity. It can also be seen that as
fp increases the average BER becomes larger. This can be ex-
plained by the fact that, at slow fading, a deep fade is likely to
last longer and the performance of the linear prediction filter is
better for large N,,. On the other hand, the linear prediction
filter is unable to track the fading distortion with large N, as
fp becomes larger. This problem can be solved by employing
a higher-order state variable model to model the rapidly vary-
ing fading channels and uses a Kalman filter to track the fading
channels [38], [39].

VI. CONCLUSIONS

In this paper, we considered the problem of blind interference
canceller in the presence of subchip-spaced multipath channels
for the DS-CDMA down-link. The performance of our pro-
posed receiver was extensively simulated under different condi-
tions. Computer simulations verify the effectiveness of our pro-
posed receiver to handle subchip-spaced multipath components
and still suppresses the MAI significantly. Based on the results,
the mismatch problem in OMF is more severe in static environ-
ment than in the fading environment. This can be explained by
the fact that each multipath component corresponds to its own
distinct eigenvector in frequency selective fading channels and
self-cancellation is greatly minimized. Lastly, despite that the
diversity combining in MFE-OMF is suboptimum, the perfor-
mance is still acceptable.
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