• 제목/요약/키워드: Direct Power Injection

검색결과 123건 처리시간 0.028초

농업용 직접분사식 디젤기관에서 함산소연료 적용시 배기배출물 특성 연구 (A Study on Characteristics for Exhaust Emission with Oxygenated Fuel in an Agricultural DI Diesel Engine)

  • 최승훈;오영택;서정덕
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.279-283
    • /
    • 2007
  • In this study, the potential possibility of oxygenates on di-ether group (DBE, dibutyl ether) was investigated as an additives for an agricultural direct injection diesel engine. It tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenates additives blending fuel which has four kinds of mixed ratio. The smoke emission of blending fuel (diesel fuel 80 vol-% + DBE 20 vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 26% at 2500 rpm, full load. And, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of blended fuel was increased compared with commercial diesel fuel.

덕트 유동에서 증발을 수반하는 액상 스프레이의 혼합 특성에 대한 실험적 연구 (An experimental study on the mixing of evaporating liquid spray with duct flow)

  • 김영봉;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.93-96
    • /
    • 2005
  • High temperature furnace such as Steam power plant and incinerator contribute considerable part of NOx generation and face urgent demand of De-NOx system. Reducing agents are necessary to use De-NOx system. In this study mixing caused by direct injection of reducing agent solution spray into flue gas duct was measured. Carbonated water was used as tracer and simulated agent because ammonia as a reducing agent is not proper to experiment. Mixing and evaporation must occur simultaneously and quickly enough to achieve desirable efficiency. To achieve that, the angle of attack of static mixer and the location is simulated and $CO_2$ concentration is measured.

  • PDF

알루미늄 합금 피스톤과 스틸 단조 피스톤의 내구성능에 관한 실험적 연구 (An Experimental Study on Durability Performance of Aluminum Alloy Piston and Steel Forging Piston)

  • 김현철;이종인;박종호
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.54-59
    • /
    • 2004
  • The goal of this research is to confirm reliable durability and evaluate the engine performance of the current aluminum alloy piston and the newly developed steel forging piston. For such purpose, the test environment was built with 2.91 target engine mounted on the engine dynamometer and additional exhaust gas analysis system. Using the test environment, engine performance test was conducted, and durability test was also conducted using a dedicated piston durability test equipment for 400,000 km. As a result of the experiment, similar durability was appeared for both aluminum piston and steel piston, and the engine output power and torque are slightly reduced because of $158\%$ heavier weight of the steel piston compare to the aluminum alloy piston.

직접 전압 인가 방식을 이용한 인버터의 전압 왜곡 보상 (Voltage Distortion Compensation of VSI based on Direct Voltage Injection)

  • 이태연;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.169-170
    • /
    • 2018
  • 전압형 인버터의 경우 IGBT와 같은 전력용 반도체 소자를 사용하여 스위칭을 하게 되는데 이상적으로 on, off 되지 않기 때문에 시간 지연이 발생하게 되고, 공정 상의 이유로 기생 커패시터가 생성되어 사용자가 원하는 시간에 스위치의 on, off가 일어나지 않게 된다. 또한, 전압형 인버터에서는 스위칭 시에 윗단과 아랫단의 스위치가 단락되는 현상을 막기 위하여 데드타임이라는 여유 시간을 주게 되는데 이러한 요인들이 인버터의 비선형성을 일으키게 된다. 인버터의 비선형성은 사용자가 플랜트로 보내고자 하는 전압과 플랜트가 받는 전압 사이에 오차를 발생시키게 된다. 본 논문에서는 이러한 전압 왜곡을 보상하기 위하여 인버터로 전압을 직접 인가하는 방식을 통해서 전압 왜곡을 계산하고 실험적으로 얻어낸 정확한 데이터를 기반으로 수식에 대입하여 전압 보상을 진행한다. 본 논문에서는 측정 시퀀스를 하나의 알고리즘으로 구현하여 짧은 시간 내에 정확히 측정해 낼 수 있는 방식을 제안한다.

  • PDF

최적계산코드를 이용한 대형 냉각재상실사고시 유량조절기 성능평가에 관한 연구 (Computational Study for the Performance of Fludic Device during LBLOCA using TRAC-M)

  • 전우청;이재훈;이상종
    • 에너지공학
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2005
  • 한국형 신형원자로1400(APR1400)은 3983MWt급의 2×4 루프 개량형 가압경수로(PWR)로서 대형 냉각재상실사고 발생시 안전주입수의 원자로용기 직접주입(DVI) 방식을 채택하고 있으며, 안전주입수탱크(SIT) 내부에 유량조절기(Fluidic Device, FD)를 장착하고 있다. 본 연구에서는 신형원자로 1400의 안전주입계통에 새로이 적용된 주요 특징 중 하나인 유량조절기에 대하여 최적안전해석코드인 TRAC-M/F90, 3.782버전을 이용한 성능평가 및 민감도 분석을 수행하였다. 연구결과 유량조절기가 안전주입수의 원자로 유입을 적절하게 조절하고 있음을 확인하였으며, 안전주입수탱크 내부의 압축질소체적 감소가 안전 주입수체적 감소에 비하여 노심의 급냉 완료 시점을 빠르게 하였다. 또한 안전주입계통의 전체 저항계수(K factor)가 최소 또는 최대일 때 노심의 급냉 완료 시점은 평균값인 경우보다 다소 늦어졌으나, 피복재 최고온도(PCT)는 상대적으로 큰 차이가 발생하지 않았다.

직접분사식 디젤기관에서 디젤유와 바이오디젤 혼합유의 연소특성에 대한 비교 연구 (대두유를 중심으로) (Comparative Analysis on Combustion Characteristics of Diesel Oil and Biodiesel Blends in Dl Diesel Engine (Using Soybean Oil))

  • 임재근;최순열;조상곤
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.29-34
    • /
    • 2009
  • Recently, we have a lot interest in a sudden rise of oil prices and a change weather for the earth warmming, so, development of new alternative fuels need in order to spare fossil fuel and reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the combustion characteristics between neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were tested using four stroke, direct injection diesel engine, especially this biodiesel was produced from soybean oil at our laboratory. This analysis showed that cylinder pressures, the rate of pressure rises and the rate of heat releases were decreased as the blending ratios of biodiesel to diesel oil increased because of lower heating value of biodiesel in spite of increased oxygen content in biodiesel.

  • PDF

환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구 (An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber)

  • 김동호;배종욱
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF

Thermo-fluid engineering in deep geothermal energy

  • 김영원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

COMPARATIVE STUDY OF GAS-TO-LIQUID (GTL) AS AN ALTERNATIVE FUEL USED IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

  • Wu, T.;Huang, Z.;Zhang, W.G.;Fang, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.421-428
    • /
    • 2007
  • This paper investigates the combustion and emission characteristics of a compression ignition engine fueled with neat and blended Shell's gas-to-liquid (GTL) fuel, which was derived from natural gas through the Fischer-Tropsch process. The experiments were conducted in a 6-cylinder DI diesel engine with pump timing settings of $6^{\circ},\;9^{\circ}\;and\;12^{\circ}$crank angle before TDC over ECE R49 and US 13-mode cycles separately and compared to a conventional diesel fuel. The results show that GTL exhibited almost the same power and torque output, improved fuel economy and effective thermal efficiency. It was found that GTL displayed lower peak in-cylinder combustion pressure and maximum heat release rate (HRR), the timings of the peak pressure and the maximum HRR were generally delayed, and the combustion durations were almost equivalent for diesel and GTL under the same speed-load condition. The results also indicate that, compared to diesel fuel, GTL blends showed a trend forward decreasing four regulated emissions simultaneously and a higher GTL fraction in blends contributing to further reductions in the emissions. In particular and on average, neat GTL significantly reduced HC, CO, NOx and PM by 16.4%, 17.8%, 18.3% and 32.4%, respectively, for all cases.

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.