• Title/Summary/Keyword: Direct Numerical Method

Search Result 688, Processing Time 0.021 seconds

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

Experimental and numerical investigation of the energy harvesting flexible flag in the wake of a bluff body

  • Latif, Usman;Abdullah, Chaudary;Uddin, Emad;Younis, M. Yamin;Sajid, Muhamad;Shah, Samiur Rehman;Mubasha, Aamir
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.279-292
    • /
    • 2018
  • Inspired by the energy harvesting eel, a flexible flag behind a D-shape cylinder in a uniform viscous flow was simulated by using the immersed boundary method (IBM) along with low-speed wind tunnel experimentation. The flag in the wake of the cylinder was strongly influenced by the vortices shed from the upstream cylinder under the vortex-vortex and vortex-body interactions. Geometric and flow parameters were optimized for the flexible flag subjected to passive flapping. The influence of length and bending coefficient of the flexible flag, the diameters (D) of the cylinder and the streamwise spacing between the cylinder and the flag, on the energy generation was examined. Constructive and destructive vortex interaction modes, unidirectional and bidirectional bending and the different flapping frequency were found which explained the variations in the energy of the downstream flag. Voltage output and flapping behavior of the flag were also observed experimentally to find a more direct relationship between the bending of the flag and its power generation.

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing;Zhu, Zhiyuan;Liu, Fang;Li, Haoxin;Jiang, Zhengwu
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Linear and Nonlinear Analysis of Initially Stressed Elastic Solid (초기응력이 있는 탄성체의 선형 및 비선형해석 -플레이트 스트립을 중심으로)

  • 권영두;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.642-651
    • /
    • 1988
  • The present paper develops finite element procedures to calculate displacements, strains and stresses in initially stressed elastic solids subjected to static or time-dependent loading conditions. As a point of departure, we employ Hamilton's principle to obtain nonlinear equations of motion characterizing the displacement in a solid. The equations of motion reduce to linear equations of motion if incremental stresses are assumed to be infinitesimal. In the case of linear problem, finite element solutions are obtained by Newmark's direct integration method and by modal analysis. An analytic solution is referred to compare with the linear finite element solution. In the case of nonlinear problem, finite element solutions are obtained by Newton-Raphson iteration method and compared with the linear solution. Finally, the effect of the order of Gauss-Legendre numerical integration on the nonlinear finite element solution, has been investigated.

Accuracy Assessment of the Upward Continuation using the Gravity Model from Ultra-high Degree Spherical Harmonics (초 고차항 구 조화 중력모델링에 의한 상향 연속의 정확도 검증)

  • Kwon Jay-Hyoun;Lee Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2006
  • The accuracy of the upward continuation is assessed through the gravity modeling using an ultra-high degree spherical harmonic expansion. The difficulties in the numerical calculation of Legendre function with ultra-high degree, underflow and/or overflow, is successfully resolved in 128 bit calculation scheme. Using the generated Legendre function, the gravity anomaly with spatial resolution of $1'{\times}1'$ on the geoid is calculated. The generated gravity anomaly is degraded and extracted with various noise levels and data intervals, then upward continuation is applied to each data sets. The comparison between the upward continued gravity disturbances and the directly calculated from the spherical harmonics showed that the accuracy on the direct method was significantly better than that of Poisson method. In addition, it is verified that the denser and less noised gravity data on the geoid generates better gravity disturbance vectors at an altitude. Especially, it is found that the gravity noise level less than 5mGal, and the data interval less than 2arcmin is necessary for next generation precision INS navigation which requires the accuracy of 5mGal or better at an altitude.

A Study on the Analysis of Non-point Source Runoff Characteristics and Verification of Unit Pollutant Load Considering Baseflow Runoff (기저유출을 고려한 비점오염 유출특성 분석과 원단위 검증에 관한 연구)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this study, the characteristics of non-point source pollution runoff and the possibility of using new unit load were investigated by using pollutant load based on monitoring data considering baseflow. For this purpose, the components of hydrograph were separated by using digital filter method and the numerical integration method was applied to calculate the non-point source pollutant load for nine rainfall events in Juwon river in the Geum River basin. As a result of this study, the mean contribution rate of non-point pollutant was 31.34% for BOD, 58.94% for T-N, and 50.42% for T-P and BOD was more influenced by baseflow pollutant. Also, it was analyzed the pollutant load using the new unit load is closer to the observation load than the old unit load. This result implies that it is necessary to manage not only pollutant load due to direct runoff but also pollutant load due to baseflow runoff for efficient water quality management of the watershed.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.