Browse > Article
http://dx.doi.org/10.12989/cac.2020.26.2.127

Micromechanical investigation for the probabilistic behavior of unsaturated concrete  

Chen, Qing (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, University of Mining & Technology)
Zhu, Zhiyuan (School of Materials Science and Engineering, Tongji University)
Liu, Fang (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
Li, Haoxin (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education)
Jiang, Zhengwu (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education)
Publication Information
Computers and Concrete / v.26, no.2, 2020 , pp. 127-136 More about this Journal
Abstract
There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.
Keywords
unsaturated concrete; probabilistic behaviors; effective properties; deterministic and stochastic micromechanics; distribution-free method; differential scheme; Monte Carlo simulations;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ferrante, F. and Graham-Brady, L. (2005), "Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate", Comput. Meth. Appl. Mech. Energy, 194, 1675-1692. https://doi.org/10.1016/j.cma.2004.03.020.   DOI
2 Ferrante, F.J., Brady, L.L.G., Acton, K. and Arwade, S.R. (2008), "An overview of micromechanics‐based techniques for the analysis of microstructural randomness in functionally graded materials", AIP Conf. Proc., 973, 190-195. https://doi.org/10.1063/1.2896775.
3 Guan, X.F., Liu, X., Jia, X., Yuan, Y., Cui, J.Z. and Mang, H.A. (2015), "A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete", Int. J. Solid. Struct., 56-57, 280-289. https://doi.org/10.1016/j.ijsolstr.2014.10.008.   DOI
4 Guan, X.F., Yu, H.T. and Tian, X. (2016), "A stochastic second-order and two-scale thermo-mechanical model for strength prediction of concrete materials", Int. J. Numer. Meth. Eng., 108(8), 885-901. https://doi.org/10.1002/nme.523.   DOI
5 Huang, Y., Xu, C., Li, H., Jiang, Z., Gong, Z., Yang, X. and Chen, Q. (2019), "Utilization of the black tea powder as multifunctional admixture for the hemihydrate gypsum", J. Clean. Prod., 210, 231-237. https://doi.org/10.1016/j.jclepro.2018.10.304.   DOI
6 Jaynes, E.T. (1957), "Information theory and statistical mechanics", Phys. Rev., 106, 620-630. https://doi.org/10.1103/PhysRev.106.620.   DOI
7 Jiang, Z.W., Yang, X.J., Yan, Z.G., Chen, Q., Zhu, H.H., Wang, C.H., Ju, J.W., Fang, Z.H. and Li, H.X. (2019), "A stochastic micromechanical model for hybrid fiber-reinforced concrete", Cement Concrete Compos., 102, 39-54. https://doi.org/10.1016/j.cemconcomp.2019.04.003.   DOI
8 Ju, J.W. and Chen, T.M. (1994a), "Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities", Acta Mech., 103(1), 123-144. https://doi.org/10.1007/BF01180222.   DOI
9 Banchs, R.E., Klie, H., Rodriguez, A., Thomas, S.G. and Wheeler, M.F. (2007), "A neural stochastic multiscale optimization framework for sensor-based parameter estimation", Integr. Comput. Aid. Eng., 14, 213-223. https://doi.org/10.3233/ICA-2007-14302.   DOI
10 Berryman, J.G. (1980), "Long-wave propagation in composite elastic media II. Ellipsoidal inclusion", J. Acoust. Soc. Am., 68(6), 1820-1831. https://doi.org/10.1121/1.385172.   DOI
11 Chakraborty, A. and Rahman, S. (2008), "Stochastic multiscale models for fracture analysis of functionally graded materials", Eng. Fract. Mech., 75, 2062-2086. https://doi.org/10.1016/j.engfracmech.2007.10.013.   DOI
12 Chakraborty, A. and Rahman, S. (2009), "A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method", Probab. Eng. Mech., 24, 438-451. https://doi.org/10.1016/j.probengmech.2009.01.001.   DOI
13 Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Li, H.X. (2018a), "The effective properties of saturated concrete healed by EDM with the ITZs", Comput. Concrete, 21(1), 67-74. https://doi.org/10.12989/cac.2018.21.1.067.   DOI
14 Norris, A.N. (1985), "A differential scheme for the effective modulus of composites", Mech. Mater., 4(1), 1-16. https://doi.org/10.1016/0167-6636(85)90002-x.   DOI
15 Ju, J.W. and Chen, T.M. (1994b), "Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities", Acta Mech., 103(1-4), 103-121. https://doi.org/10.1007/bf01180221.   DOI
16 Ju, J.W. and Zhang, X.D. (1998), "Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers", Int. J. Solid. Struct., 35(9-10), 941-960. https://doi.org/10.1016/S0020-7683(97)00090-5.   DOI
17 Li, H., Xu, C., Dong, B., Chen, Q., Gu, L., Yang, X. and Wang, W. (2020), "Differences between their influences of TEA and TEA.HCl on the properties of cement paste", Constr. Build. Mater., 239, 117797. https://doi.org/10.1016/j.conbuildmat.2019.117797.   DOI
18 McLaughlin, R. (1977), "A study of the differential scheme for composite materials", Int. J. Eng. Sci., 15(4), 237-244. https://doi.org/10.1016/0020-7225(77)90058-1.   DOI
19 Mura, T. (1987), Micromechanics of Defects in Solids, Kluwer Academic, Dordrecht, the Netherlands.
20 Ostoja-Starzewski, M. (1993), "Micromechanics as a basis of stochastic finite elements and differences: an overview", Appl. Mech. Rev., 46(11S), 136-147. https://doi.org/10.1115/1.3122629.   DOI
21 Rahman, S. (2009), "Multi-scale fracture of random heterogeneous materials", Ship. Offshore Struct., 4, 261-274. https://doi.org/10.1080/17445300903149046.   DOI
22 Rahman, S. and Chakraborty, A. (2007), "A stochastic micromechanical model for elastic properties of functionally graded materials", Mech. Mater., 39(6), 548-563. https://doi.org/10.1016/j.mechmat.2006.08.006.   DOI
23 Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effect on concrete strength", ACI Mater. J., 96, 293-300.
24 Chen, Q., Wang, H., Jiang, Z.W., Zhu, H.H., Ju, J.W. and Yan, Z.G. (2020), "Reaction-degree-based multi-scale predictions for the effective properties of ultra-high-performance concrete", Mag. Concrete Res., 1-12. https://doi.org/10.1680/jmacr.19.00415.
25 Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Wang, Y.Q. (2016a), "Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method", Mater. Struct., 49(12), 5183-5193. https://doi.org/10.1617/s11527-016-0853-1.   DOI
26 Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Wang, Y.Q. (2017a), "Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method", Acta Mech., 228(2), 415-431. https://doi.org/10.1007/s00707-016-1710-6.   DOI
27 Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W. and Yan, Z.G. (2017b), "Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects", Int. J. Damage Mech., 26(2), 210-228. https://doi.org/10.1177/1056789516672163.   DOI
28 Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G., Li, H.X. and Timon, R. (2018b), "A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method with the bonding effects", Int. J. Damage Mech., 27(9), 1307-1324. https://doi.org/10.1177/1056789518773633.   DOI
29 Chen, Q., Nezhad, M.M., Fisher, Q. and Zhu, H.H. (2016b), "Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone", Int. J. Rock Mech. Min., 84, 95-104. https://doi.org/10.1016/j.ijrmms.2016.02.007.   DOI
30 Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T. and Zhou, S. (2015a), "A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities", Acta Mech., 226(6), 1861-1880. https://doi.org/10.1007/s00707-014-1278-y.   DOI
31 Tomar, S.S., Zafar, S., Talha, M., Gao, W. and Hui, D. (2018), "State of the art of composite structures in non-deterministic framework: A review", Thin Wall. Struct., 132, 700-716. https://doi.org/10.1093/ecam/nel034.   DOI
32 Rossi, P., Van Mier, J.G.M. and Boulay, C. (1992), "The dynamic behavior of concrete: influence of free water", Mater. Struct., 25(9), 509-514. https://doi.org/10.1007/BF02472446.   DOI
33 Smith, J.C. (1976), "Experimental values for the elastic constants of a particulate-filled glassy polymer", J. Res. NBS, 80A, 45-49. https://doi.org/10.6028/jres.080A.008.   DOI
34 Sun, L.Z. and Ju, J.W. (2004), "Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles", J. Appl. Mech.-T. ASME, 71(6), 774-785. https://doi.org/10.1115/1.1794699.   DOI
35 Wang, H.L. and Li, Q.B. (2007), "Prediction of elastic modulus and Poisson's ratio for unsaturated concrete", Int. J. Solid. Struct., 44(5), 1370-1379. https://doi.org/10.1016/j.ijsolstr.2006.06.028.   DOI
36 Yaman, I.O., Hearn, N. and Aktan, H.M. (2002a), "Active and non-active porosity in concrete part I: experimental evidence", Mater. Struct., 35(3), 102-109. https://doi.org/10.1007/BF02482109.   DOI
37 Chen, Q., Zhu, H.H., Ju, J.W., Jiang, Z.W., Yan, Z.G. and Li, H.X. (2018c), "Stochastic micromechanical predictions for the effective properties of concrete considering the interfacial transition zone effects", Int. J. Damage Mech., 27(8), 1252-1271. https://doi.org/10.1177/1056789517728501.   DOI
38 Yaman, I.O., Hearn, N. and Aktan, H.M. (2002b), "Active and non-active porosity in concrete part II: evaluation of existing models", Mater. Struct., 35(3), 110-116. https://doi.org/10.1007/BF02482110.   DOI
39 Yan, Z.G., Chen, Q., Zhu, H.H., Ju, J.W., Zhou, S. and Jiang, Z.W. (2013), "A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method", Int. J. Solid. Struct., 50(24), 3875-3885. https://doi.org/10.1016/j.ijsolstr.2013.07.020.   DOI
40 Yang, X., Liu, J., Li, H., Xu, L., Ren, Q. and Li, L. (2019), "Effect of triethanolamine hydrochloride on the performance of cement paste", Constr. Build. Mater., 200, 218-225. https://doi.org/10.1016/j.conbuildmat.2018.12.124.   DOI
41 Chen, Q., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, C.H. and Jiang, Z.W. (2018d), "A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle", Acta Mech., 229(7), 2719-2735. https://doi.org/10.1007/s00707-018-2135-1.   DOI
42 Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T. and Zhou, S. (2015b), "Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method", J. Build Struct., 36(1), 98-103. https://doi.org/10.6052/0459-1879-14-147.
43 Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T. and Zhou, S. (2015c), "Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method", Chin. J. Theor. Appl. Mech., 47(2), 367-371. https://doi.org/10.6052/0459-1879-14-147.
44 Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Jiang, Z.W. and Wang, Y.Q. (2016c), "A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects", Constr. Build. Mater., 114, 839-850. https://doi.org/10.1016/j.conbuildmat.2016.04.008.   DOI
45 Zhu, H.H., Chen, Q., Yan, Z.G., Ju, J.W. and Zhou, S. (2014a), "Micromechanical model for saturated concrete repaired by electrochemical deposition method", Mater. Struct., 47, 1067-1082. https://doi.org/10.1617/s11527-013-0115-4.   DOI
46 Yang, Z.H., Guan, X.F., Cui, J.Z., Dong, H., Wu, Y. and Zhang, J.Q. (2020), "Stochastic multiscale heat transfer analysis of heterogeneous materials with multiple random configurations", Commun. Comput. Phys., 27(2), 431-459. https://doi.org/10.4208/cicp.OA-2018-0311.   DOI
47 Zhou, S., Zhu, H.H., Ju, J.W., Yan, Z.G. and Chen, Q. (2017), "Modeling microcapsule-enabled self-healing cementitious composite materials using discrete element method", Int. J. Damage Mech., 26(2), 340-357. https://doi.org/10.1177/1056789516688835.   DOI
48 Zhu, H.H., Chen, Q., Ju, J.W., Yan, Z.G., Guo, F., Wang, Y.Q., Jiang, Z.W., Zhou, S. and Wu, B. (2015), "Maximum entropy based stochastic micromechanical model for a two-phase composite considering the inter-particle interaction effect", Acta Mech., 226(9), 3069-3084. https://doi.org/10.1007/s00707-015-1375-6.   DOI
49 Zhu, H.H., Zuo, Y.L., Li, X.J., Deng, J. and Zhuang, X.Y. (2014b), "Estimation of the fracture diameter distributions using the maximum entropy principle", Int. J. Rock Mech. Min., 72, 127-137. https://doi.org/10.1016/j.ijrmms.2014.09.006.   DOI
50 Dong, H., Yang, Z.H., Guan, X.F. and Yang, Z.Q. (2020), "Stochastic second-order two-scale method for predicting the mechanical properties of composite materials with random interpenetrating phase", Commun. Math. Res., 36(2), 193-210. https://doi.org/10.4208/cmr.2020-0007.   DOI
51 Er, G.K. (1998), "A method for multi-parameter PDF estimation of random variables", Struct. Saf., 20(1), 25-36. https://doi.org/10.1016/S0167-4730(97)00029-5.   DOI
52 Nezhad, M.M., Zhu, H.H., Ju, J.W. and Chen, Q. (2016), "A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading", Int. J. Damage Mech., 5(5), 705-726. https://doi.org/10.1177/1056789516639531.   DOI