• Title/Summary/Keyword: Direct Numerical Method

Search Result 688, Processing Time 0.033 seconds

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Evaluation and Prediction of Cleanliness Level in the Mini-Environment System Using Local Mean Air-Age (국소평균공기연령을 이용한 국소환경시스템의 청정도 평가 및 예측)

  • Noh, Kwang-Chul;Lee, Hyeon-Cheol;Park, Jung-Il;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.457-466
    • /
    • 2007
  • A numerical and experimental study on the evaluation and the prediction of cleanliness level in the mini-environment system was carried out. Using the concept of local mean air-age (LMA) and effective flow rate, the new direct method for estimating the mini-environment was developed and compared with the previous performance index of airflow pattern characteristics. It was found out that the airflow pattern analysis is a restricted method to estimate the real performance of the mini-environment. The reason is that the airflow pattern cannot predict the effect of the increment of the ventilation rate on the cleanliness level in the mini-environment. While LMA is capable of showing the effects of the contaminant accumulation caused by turbulent intensity, eddy, and the increment of the effective flow rate. This result showed that LMA is more exact and effective performance index than the previous one like the airflow pattern characteristics.

Comparison Between Radiation Power and Beamforming Power of plate (평판에서의 음향 방사파워와 구면파 모델을 이용한 빔형성 파워와의 비교)

  • Kim, Young-Key;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.12-18
    • /
    • 1997
  • Beamforming method has a limited spatial resolution because of finite aperture size, so that the estimated source distributions are smoothed within the resolution. Especially for low frequency noise such as mechanical noise, this limitation often diminishes the direct use of beamforming method. In this study, the relation between smoothed beamforming and radiation power distribution of plate has been addressed. By adjustment of aperture size of array, the smoothed beamforming power shows radiation power distribution of plate. Numerical simulations are carried for simply supported plate.

  • PDF

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

A Study on the Escalation Method for Contract Adjustment Public Construction Project (물가변동에 따른 계약금액 조정방식의 지수조정율 산출에 관한 연구)

  • Bae Kyoung-Tae;Choi Dong-Soo;Hwang Chi Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The business market of architecture has got a system that controls a deposit according to the price function. This system is written on a law of contract about countries. So the main body of construction has to make a reasonable contract. This study is written about a rate of numerical index on controling a deposit. We tried to fine problems and solutions of labor expenses, instrument costs and material costs which is so big and changable on the construction market Labor expenses are expressed according to the rate of construction scale between direct and indirect cost that applies ability of works. Instrument costs are expressed according to an output method of a unit price annually and a weight allowance of local instrument conditions and use frequence. The last material costs expressed according to a local weight allowance make a decision of the material cost index. They applies locally relative index more than absolute one on what uses the price rate of producers and importations. This solutions are not enough to apply to the real market, so it needs to exam and to be on the market after a feasibility study.

  • PDF

Nondestructive damage evaluation of a curved thin beam

  • Kim, Byeong Hwa;Joo, Hwan Joong;Park, Tae Hyo
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.665-682
    • /
    • 2006
  • A vibration-based nondestructive damage evaluation technique for a curved thin beam is introduced. The proposed method is capable of detecting, locating, and sizing structural damage simultaneously by using a few of the lower natural frequencies and their corresponding mode shapes before and after a small damage event. The proposed approach utilizes modal flexibilities reconstructed from measured modal parameters. A rigorous system of equations governing damage and curvature of modal flexibility is derived in the context of elasticity. To solve the resulting system of governing equations, an efficient pseudo-inverse technique is introduced. The direct inspection of the resulting solutions provides the location and severity of damage in a curved thin beam. This study confirms that there is a strong linear relationship between the curvature of modal flexibility and flexural damage in the selected class of structures. Several numerical case studies are provided to justify the performance of the proposed approach. The proposed method introduces a way to avoid the singularity and mode selection problems from earlier attempts.

An Approximation Approach for A Multi-Product Continuous Review Inventory Problem with Budget Constraint (예산의 계약이 있는 다품종 연속적 재고 관리 문제에서 추정을 통한 해법)

  • Lee, Dong-Ju;Yoo, Jae-Wook;Lee, Moon-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • Most approaches for continuous review inventory problem need tables for loss function and cumulative standard normal distribution. Furthermore, it is time-consuming to calculate order quantity (Q) and reorder point (r) iteratively until required values are converged. The purpose of this paper is to develop a direct method to get the solution without any tables. We used approximation approaches for loss function and cumulative standard normal distribution. The proposed method can get the solution directly without any iterative procedure for Q, r and without any tables. The performance of the proposed approach is tested by using numerical examples. The budget constraint of this paper assumes that purchasing costs are paid at the time an order is arrived. This constraint can be easily replaced by capacity constraint or budget constraint in which' purchasing costs are paid at the time an order is placed.

Optimal Design of the Induction Heating Coil using Transient Design Sensitivity Analysis (과도상태 설계민감도를 이용한 유도가열코일의 최적설계)

  • Kwak, In-Gu;Byun, Jin-Kyu;Choi, Kyung;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.327-337
    • /
    • 2000
  • In this paper, the design sensitivity formula for the control of the transient temperature distribution is developed using the direct differentiation method, and used for the optimal design of induction heating coil position. The temperature distribution is calculated using the heat source of the induced eddy current and heat diffusion equation. The physical property variations of the workpiece depending on the temperature are considered. The eddy current distribution and the temperature distribution are calculated with the 2D finite element procedure. The adjoint variable technique is employed in expressing the design sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the workpiece. The numerical example shows that the proposed design sensitivity analysis for the control of the transient temperature distribution is very useful and practical in the optimal design of induction heating coils.

  • PDF