• 제목/요약/키워드: Direct Matrix Converter

검색결과 27건 처리시간 0.019초

매트릭스 컨버터 토폴로지를 이용한 직류전동기 속도제어 (The Speed Control for Direct Current Motors Using Matrix Converter Topology)

  • 정범동
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.238-245
    • /
    • 2018
  • 본 논문은 직류전동기 속도제어를 위해 매트릭스 컨버터의 적용 가능성을 제안한다. 매트릭스 컨버터는 크게 직접 매트릭스 컨버터와 간접 매트릭스 컨버터로 나뉘는데 본 논문에서는 다양한 출력 단을 구성할 수 있어 향후 많은 활용이 예상되는 간접 매트릭스 컨버터를 이용하였다. 제안한 방식은 기존의 방식보다 입력 전류의 파형을 개선하고, 부피가 크고 비용이 많이 들며 수명단축의 원인이 되는 에너지 저장 요소를 가지지 않는 이점이 있다. 시뮬레이션을 통하여 기존 방식과 본 논문에서 제안하는 방식의 특징을 비교 분석하여 제안한 방식의 유효성을 입증하였다. 속도제어, 토크제어, 부하전류제어에서는 유사한 성능을 보이며, 입력전류는 정류단의 스위치를 직접 제어함으로써 정현파와 유사하게 제어되기 때문에 고조파가 크게 감소되었다.

Implementation of Direct Torque Control Method using Matrix Converter Fed Induction Motor

  • Lee, Hong-Hee;Nguyen, Hoang M.;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.74-80
    • /
    • 2008
  • This paper develops a direct torque control method (DTC) using a matrix converter fed induction motor. The advantages of matrix converters are combined with the advantages of the DTC technique; under the constraint of the unity input power factor, the required voltage vectors are generated to implement the conventional DTC method of induction motor. The proposed DTC algorithm is applied to induction motors and the experimental results are given in steady-state and transient conditions, while the discussion about the trend of the DTC method using the MC is also carried out. Furthermore, the entire system of the matrix converter configuration using 7.5kW IGBT module is explained in detail.

Improved Direct Torque Control for Sensorless Matrix Converter Drives with Constant Switching Frequency and Torque Ripple Reduction

  • Lee Kyo-Beum;Blaabjerg Frede
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.113-123
    • /
    • 2006
  • In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed which enables to minimize torque ripple, to obtain unity input power factor, and to achieve good sensorless speed-control performance in the low speed operation, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation and a flux deadbeat controller. To overcome the phase current distortion by the non-linearity of a matrix converter drive, the simple non-linearity compensation method using PQR power theory are presented in the proposed scheme. Experimental results are shown to illustrate the feasibility of the proposed strategy.

매트릭스 컨버터를 사용한 네트워크 기반 천정형 크레인 제어 시스템 (Network-Based Overhead Crane Control System Using Matrix Converters)

  • 이홍희;전태원
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • 본 논문은 CAN을 사용하여 매트릭스 컨버터로 구동되는 천정형 크레인의 총괄제어 기법을 제시하였다. 크레인의 갠추리, 트롤리 및 호이스트 구동용으로 4개 매트릭스 컨버터-유도전동기 구동장치를 직접토크 기법으로 위치 제어한다. 위치제어 알고리즘과 CAN을 사용한 크레인의 총괄제어 기법을 제시하고, 시뮬레이션 및 실험을 통하여 매트릭스 컨버터-유도전동기로 구동되는 크레인의 위치제어 성능을 확인한다.

Single-Phase Voltage-Fed Z-Source Matrix Converter

  • Fang, Xupeng;Liu, Jie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.46-52
    • /
    • 2012
  • This paper proposes a novel single-phase ac-ac converter topology based on the Z-source concept. The converter provides buck-boost function and plays the role of frequency changer. Compared to the traditional ac-dc-ac converter, it uses fewer devices, realizes direct ac-ac power conversion, and has a simpler circuit structure, so as to have higher efficiency and better circuit characteristics. Compared to the traditional matrix converter, it provides a wider voltage regulation range. The circuit topology, operating principle, control method and simulation results are given in this paper, and the rationality and feasibility is verified.

DDPWM Based Control of Matrix Converters

  • Li, Yu-Long;Choi, Nam-Sup;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.535-543
    • /
    • 2009
  • In this paper, pulse-width modulation (PWM) control strategy of various topologies of matrix converters is presented, which is based on direct duty ratio PWM (DDPWM). Because the DDPWM method has the characteristics of the inherent per-phase modular structure, it can be effectively applied to single-phase, two-phase and three-phase four-leg matrix converters as well as the common three-phase to three-phase matrix converter. Also, this paper treats command generation method in each matrix converter. The feasibility and validity of the proposed method are verified by experimental results.

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

스텝리스 전류 커뮤테이션 기법이 적용된 직접형 매트릭스 컨버터를 위한 입력 필터 (Input Filter for Direct Matrix Converter with Stepless Current Commutation Technique)

  • 한상훈;권소연;조영훈
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.152-155
    • /
    • 2020
  • This study proposes an input filter for a gallium-nitride-based direct matrix converter with a stepless current commutation technique. Various current commutation strategies have been adopted for reliable operation of switches. These strategies are complex to be implemented and require additional components. The stepless current commutation technique is simple to operate but causes overcurrent issues due to the occurrence of short circuit on input sources. In this study, to restrict the short circuit current, we utilized GaN devices with fast switching properties and modified the input filter. The proposed input filter was verified by experimental results of induction motor drive.

Direct Duty-ratio Modulated Fault-tolerant Strategy for Matrix Converter-fed Motor Drives

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.24-32
    • /
    • 2012
  • Direct duty-ratio PWM schemes for continuous fault tolerant operation of matrix converter-fed motor drives are presented. The proposed method features simple modular modulation structure based on per output phase concept, which requires no additional modification on the normal modulation schemes for fault-tolerant applications. Realizations of fault-tolerant strategy applied to different system configurations are also treated to enhance the system flexibility. The proposed method can be effectively applied to treat the motor open phase fault and converter switching device failure. Simulation and experimental results show the feasibility and validation of the proposed strategies.

High Performance Current Controller for Sparse Matrix Converter Based on Model Predictive Control

  • Lee, Eunsil;Lee, Kyo-Beum;Lee, Young Il;Song, Joong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1138-1145
    • /
    • 2013
  • A novel predictive current control strategy for a sparse matrix converter is presented. The sparse matrix converter is functionally-equivalent to the direct matrix converter but has a reduced number of switches. The predictive current control uses a model of the system to predict the future value of the load current and generates the reference voltage vector that minimizes a given cost function so that space vector modulation is achieved. The results show that the proposed controller for sparse matrix converters controls the load current very effectively and performs very well through simulation and experimental results.