• 제목/요약/키워드: Direct Injection Diesel Engine

검색결과 260건 처리시간 0.021초

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감 (Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

직분식 소형 과급 디젤엔진에서 EGR이 배기배출물에 미치는 영향 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호;고대권
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.188-194
    • /
    • 2005
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments were performed at various engine loads while the EGR rates were set from $0\%$ to $30\%.$ The emissions trade-off and combustion of diesel engine are investigated. The brake specific fuel consumption rate is very slightly fluctuated with EGR in the range of experimental conditions. The ignition delay increased with increasing EGR rate. The maximum value of premixed combustion for the rate of heat release is increased with increasing EGR rate. NOx emissions are decreased with increasing EGR rate at high load and high speed. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions.

승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine)

  • 노현구;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구 (A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine)

  • 김기복
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감 (Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

直接噴射式디이젤機關 의 燃燒性 向上 에 관한 考察 (The Study for Improving the Combustion in a Direct-Injection Type Diesel Engine)

  • 방중철
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.257-262
    • /
    • 1983
  • The performance of a direct-injection type diesel engine often depends on the shape of combustion chamber, strength of swirl or squish, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In this paper, the relation betweeen the flame progress and the performance of engine was clarified by changing variously the combustion process in cylinder with a special method, and thus the measures for improving the combustion were indirectly examined. Namely it was investigated what effect the flame progress in cylinder, which was varied with the locality of the lean premixture injected by the auxiliary injection method using an auxiliary injection nozzle in advance at the place where main spray was injected later, has on the engine output, the exhaust smoke density and the NO concentration in exhaust gas.

THE EFFECTS OF EGR AND SPLIT FUEL INJECTION ON DIESEL ENGINE EMISSION

  • Gao, Z.;Schreiber, W.
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.123-133
    • /
    • 2001
  • An important goal in diesel engine research is the development of a means to reduce the emission of oxides of nitrogen ($NO_x$) and soot particulate. A phenomenological model based on the multizone concept is used in the current paper to analyze and compare the effects of exhaust gas recirculation (EGR) and split fuel injection on emission from a compression-ignited, direct-injection engine. The present results show that $NO_x$ can be reduced with a minimum penalty of soot particle emission with cooled EGR. Compared with EGR, split fuel injection has a higher soot penalty at a given level of $NO_x$ reduction.

  • PDF

유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구 (An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm)

  • 김동광;조남효;차순창;조순호
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.