• Title/Summary/Keyword: Direct Frequency Analysis

Search Result 662, Processing Time 0.035 seconds

Computational Efficiency on Frequency Domain Analysis of Large-scale Finite Element Model by Combination of Iterative and Direct Sparse Solver (반복-직접 희소 솔버 조합에 의한 대규모 유한요소 모델의 주파수 영역 해석의 계산 효율)

  • Cho, Jeong-Rae;Cho, Keunhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.117-124
    • /
    • 2019
  • Parallel sparse solvers are essential for solving large-scale finite element models. This paper introduces the combination of iterative and direct solver that can be applied efficiently to problems that require continuous solution for a subtly changing sequence of systems of equations. The iterative-direct sparse solver combination technique, proposed and implemented in the parallel sparse solver package, PARDISO, means that iterative sparse solver is applied for the newly updated linear system, but it uses the direct sparse solver's factorization of previous system matrix as a preconditioner. If the solution does not converge until the preset iterations, the solution will be sought by the direct sparse solver, and the last factorization results will be used as a preconditioner for subsequent updated system of equations. In this study, an improved method that sets the maximum number of iterations dynamically at the first Krylov iteration step is proposed and verified thereby enhancing calculation efficiency by the frequency domain analysis.

Performance Analysis of OFDM Systems in the Presence of DC Offset and Frequency Offset (직류 성분 편차 및 주파수 편차가 존재하는 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.900-905
    • /
    • 2008
  • I perform bit error rate(BER) analysis of orthogonal frequency division multiplexing(OFDM) systems impaired by both direct current(DC) offset and carrier frequency offset. By analyzing the BER performance for real OFDM systems employing 16-quadrature amplitude modulation(QAM) and pilot symbol estimation, the dependency of BER on the DC offset and carrier frequency offset is quantified and compared to ideal performance. Results show that the magnitude of frequency offset and DC offset are required to be less than 0.01 and 0.007, respectively.

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

Analysis of Performance employing Chromatic Dispersion in Millimeter-wave Links (밀리미터파 대역 링크에서 색 분산에 의한 성능 분석)

  • 김정태
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.309-312
    • /
    • 2000
  • In this paper, The Influence of chromatic fiber dispersion on the transmission distance of MMW(millimeter-wave) link is analyzed and discussed. It is shown that dispersion significantly limits the transmission distance in intensity modulated direct detection and heterodyne links operating in the above 20㎓ frequency region by inducing a carrier to noise penalty on the transmitted signal. We analyze and discuss the influence of dispersion induced CNR(Carrier to Noise Ratio) penalty for direct detection and heterodyne method from simulation.

  • PDF

Towards reducing acoustical high-frequency noise of a direct current relay via contact structure (직류 계전기의 접촉구조에 의한 고주파수 소음저감)

  • Junhyeok, Yang;Jongseob, Won;Wonjin, Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.691-697
    • /
    • 2022
  • In this work, a straightforward component design of a direct current (DC) relay equipped in electric vehicles is discussed. The work aims to provide and evaluate effective measures for reducing high-frequency sound from the DC relay carrying electric power. From the operation experiments for the relay, it is observed that noise is caused by the resonance from the forced vibration by the electromagnetic repulsive force originating at the area of electric contacts with a resonance frequency of around 710 Hz ~ 730 Hz. A finite element model for the relay was established to conduct vibration mode analysis, consisting of stationary and movable contacts and a contact spring. Vibration mode analysis indicates that in the resonance frequency, the movable contact with two-point contacts experiences rotational vibration mode. For the proposed relay with a three-point contact, vibration mode analyses give reasonable results of reducing noise at that frequency. Furthermore, for the fabricated relays with the three-point contact, similar results have been obtained. In conclusion, one can see that the proposed measures provide one of the feasible solutions to the reduction of relay noise.

A Design of a Diredt Digital Frequency Syntheszer with an Array Type CORDIC Pipeline (파이프라인형 CORDIC를 이용한 직접 디지털 주파수 합성기 설계)

  • 남현숙;김대용;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.36-43
    • /
    • 1999
  • A new design of a Direct Digital Frequency Synthesizer(DDFS) is presented, where a pipelined Coordinate Rotate Digital Computer(CORDIC) circuit is employed to calculate amplitude values of all the phase angles of sinusoidal waveforms produced. a near-optimal number of pipeline stages is determined based on an error analysis of calculated amplitude values in terms of the number of bits. The DDFS was implemented using a field programmable gate array, yielding a stable operating frequency of 11.75MHz. The measurement results show higher resolution, faster operating speed and simpler fabrication process, compared to ROM-based counterparts. The CORDIC-based DDFS yields 5 times higher resolution than conventional ROM-based versions.

  • PDF

Empirical mode decomposition based on Fourier transform and band-pass filter

  • Chen, Zheng-Shou;Rhee, Shin Hyung;Liu, Gui-Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.939-951
    • /
    • 2019
  • A novel empirical mode decomposition strategy based on Fourier transform and band-pass filter techniques, contributing to efficient instantaneous vibration analyses, is developed in this study. Two key improvements are proposed. The first is associated with the adoption of a band-pass filter technique for intrinsic mode function sifting. The primary characteristic of decomposed components is that their bandwidths do not overlap in the frequency domain. The second improvement concerns an attempt to design narrowband constraints as the essential requirements for intrinsic mode function to make it physically meaningful. Because all decomposed components are generated with respect to their intrinsic narrow bandwidth and strict sifting from high to low frequencies successively, they are orthogonal to each other and are thus suitable for an instantaneous frequency analysis. The direct Hilbert spectrum is employed to illustrate the instantaneous time-frequency-energy distribution. Commendable agreement between the illustrations of the proposed direct Hilbert spectrum and the traditional Fourier spectrum was observed. This method provides robust identifications of vibration modes embedded in vibration processes, deemed to be an efficient means to obtain valuable instantaneous information.

Baseband Signal Compensation Scheme for Frequency Selective Fading Channel and RF Impairments in OFDM System (OFDM 시스템에서 주파수 선택적 페이딩 채널과 RF 불완전 변환 극복을 위한 기저대역 신호보상 기법)

  • Kim, Jae-Kil;Kim, Jeong-Been;Hwang, Jin-Yong;Shin, Dong-Chul;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.55-64
    • /
    • 2010
  • In this paper, we propose a new compensation scheme for combined channel distortions and RF impairments based on the analysis of the impacts of IQ(In-phase/Quadrature) imbalance and phase noise on the OFDM(Orthogonal Frequency Division Multiplexing) system in the direct conversion transceiver and frequency selective fading channel distortion. The proposed scheme estimates the combined distortion by the use of training symbols and the residual distortion by pilot symbols and compensates the combined distortion, including IQ imbalance, phase noise and multipath fading at the same time. The simulation results show that the proposed scheme compensates the combined distortion of IQ imbalance, phase noise and multipath fading simultaneously.

A Nonlinear Response Analysis of Tension Leg Platforms in Irregular Waves (불규칙파중의 인장계류식 해양구조물의 비선형 응답 해석)

  • Lee, Chang-Ho;Gu, Ja-Sam;Jo, Hyo-Je;Hong, Bong-Gi
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.33-42
    • /
    • 1998
  • In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.