DOI QR코드

DOI QR Code

Towards reducing acoustical high-frequency noise of a direct current relay via contact structure

직류 계전기의 접촉구조에 의한 고주파수 소음저감

  • Received : 2022.07.26
  • Accepted : 2022.10.28
  • Published : 2022.11.30

Abstract

In this work, a straightforward component design of a direct current (DC) relay equipped in electric vehicles is discussed. The work aims to provide and evaluate effective measures for reducing high-frequency sound from the DC relay carrying electric power. From the operation experiments for the relay, it is observed that noise is caused by the resonance from the forced vibration by the electromagnetic repulsive force originating at the area of electric contacts with a resonance frequency of around 710 Hz ~ 730 Hz. A finite element model for the relay was established to conduct vibration mode analysis, consisting of stationary and movable contacts and a contact spring. Vibration mode analysis indicates that in the resonance frequency, the movable contact with two-point contacts experiences rotational vibration mode. For the proposed relay with a three-point contact, vibration mode analyses give reasonable results of reducing noise at that frequency. Furthermore, for the fabricated relays with the three-point contact, similar results have been obtained. In conclusion, one can see that the proposed measures provide one of the feasible solutions to the reduction of relay noise.

직류 계전기는 전기자동차의 하나의 부품으로 간헐적으로 고주파수 소음이 710 Hz ~ 730 Hz의 주파수 범위에서 전기적 부하에 의해 발생한다. 고정접점과 가동접점 사이에서 발생하는 전자 반발력이 가동접점과 접압 스프링을 진동시키고, 그 진동으로 가동접점과 접압 스프링에 공진이 발생하여 고주파수 소음이 발생한다. 본 논문에서는 수치해석 및 실험을 통하여 고주파수 소음의 원인을 규명하고, 소음을 제거하는 방안을 제시하였다. 710 Hz ~ 730 Hz의 주파수 범위에서 가동접점은 고정접점과의 2개의 접촉점을 기준으로 회전하는 공진모드가 발생한다. 따라서 해당 여기서 제안한 방법은 공진모드를 제거하기 위해 가동접점의 구조를 2점 접촉구조 방식에서 3점 접촉구조 방식으로 변경하는 것이다. 3점 접촉구조를 적용함에 따라 공진모드가 제거되는 것을 수치해석으로 확인하였고, 실험적으로도 고주파수 소음이 발생하지 않는 것을 확인하였다.

Keywords

References

  1. J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable Sustainable Energy Rev. 49, 365-385 (2015). https://doi.org/10.1016/j.rser.2015.04.130
  2. F. Un-Noor, S. Padmanaban, L. Mihet-Popa, M. N. Mollah, and E. Hossain, "A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development," Energies, 10, 1217 (2017).
  3. P. Vijayraghavan and R. Krishnan, "Noise in electric machines: a review," IEEE Trans. Ind. Appl. 35, 1007-1013 (1999). https://doi.org/10.1109/28.793360
  4. D. Hubbard, "Reducing noise on the output of a switching regulator," TI, ADJ, Rep., 2018.
  5. J. Hua, "Output Noise Filtering for DC/DC Power Modules," TI, ADJ, Rep., 2019.
  6. T. Ito and K. "Akatsu, Electromagnetic force acquisition distributed in electric motor to reduce vibration," Proc. 18th ICEMS, 1329-1333 (2015).
  7. V. Umesh, S. Mishra, S. Simon, A. K. Singh, and P. Moses, "Universal electrical motor acoustic noise reduction based on rotor surface modification," Proc. IconDSC, 1-5 (2019).
  8. C. Ma and S. Zuo, "Black-box method of identification and diagnosis of abnormal noise sources of permanent magnet synchronous machines for electric vehicles," IEEE Trans. Ind. Electron. 61, 5538-5549 (2014). https://doi.org/10.1109/TIE.2014.2301767
  9. D. Tousignant and J. Bylinski, "Relay acoustical noise reduction system," Ademco Inc, 2014.
  10. Y. K. Ko, S. S. Cho, H. Huh, S. Y. Lee, H. T. Park, and I. S. Oh, "Design of HEV-relay using response surface method to improve bounce characteristics," Proc. IEEE ISIE, 169-174 (2009).
  11. G. H. Lee, Y. B. Kim, H. T. Park, and J. W. Son, "Study on the noise reduction of the high voltage DC relay" (in Korean), Proc Trans. Korean Soc. Noise Vib. Eng. 788-792 (2007).
  12. J. Y. Seo and W. J. Kim, "An experimental study on the noise reduction method of HEV-relay module" (in Korean), Journal of KSPE, 27, 77-83 (2010).
  13. V. Gurevich, Electric Relays, Principles and Applications (CRC Press, Boca Raton, 2005), pp. 79-82.
  14. R. Holm, Electric Contacts: Theory and Application (Springer-Verlag, Berlin, 1967), pp. 1-484.
  15. J. A. Greenwood, "Constriction resistance and the real area of contact," Br. J. Appl. Phys. 17, 1621-1632 (1966). https://doi.org/10.1088/0508-3443/17/12/310
  16. P. Zhang, Effects of surface roughness on electrical contact, RF heating and field enhancement, (Ph.D. dissertation, The University of Michigan, 2012).
  17. Y.M. Kim, S. H. Cho, K. J. Lim, K. S. Kim, and B. Y. Jang, "Analysis on electromagnetic repulsion force in molded case circuit breaker," Proc. 1st ICEPE-ST, 379-382 (2011).
  18. M. Braunovic, V. V. Konchits, and N. K. Myshkin, Electrical Contacts - Fundamentals, Applications and Technology (CRC Press, Boca Raton, 2006), pp.6-9.