• Title/Summary/Keyword: Direct Fabrication

Search Result 483, Processing Time 0.027 seconds

A New X-Ray Image Sensor Utilizing a Liquid Crystal Panel (새 구조의 액정 엑스선 감지기)

  • Rho, Bong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • We developed a new x-ray image sensor utilizing a reflection-mode liquid crystal panel as its sensitive element, and tested its functionality by using it to obtain an x-ray image of a printed circuit board. In the liquid crystal x-ray image sensors hitherto reported, the liquid crystal layer is in direct contact with the photoconductive film which is deposited on a glass substrate. In the fabrication of the new x-ray image sensor, a liquid crystal panel is fabricated in the first step by using a pair of glass plates of a few centimeters thicknrss. Then one of the glass substrates is ground until its thickness is reduced to about $60\;{\mu}m$. After polishing the glass plate, dielectric films for high reflectance at 630 nm, a film of amorphous selenium for photoconduction, and a transparent conductive film for electrode are deposited in sequence. The new x-ray image sensor has several merits: primarily, fabrication of a large area sensor is more easily compared with the old fashioned x-ray image sensors. Since the reflection type liquid crystal panel has a very steep response curve, the new x-ray sensor has much more sensitivity to x-rays compared with the conventional x-ray area sensor, and the radiation dosage can be reduced down to less then 20%. By combining the new x-ray sensor with CCD camera technology, real-time x-ray images can be easily captured. We report the structure, fabrication process and characteristics of the new x-ray image sensor.

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Fabrication of Fluorinated Polymeric Membranes and Their Noble Gas Separation Properties (불소 표면 개질 고분자 분리막의 제조와 노블가스 분리특성)

  • Kim, Gi-Bum;Yoon, Kuk-Ro
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.475-478
    • /
    • 2010
  • Fluorinated polymeric membranes were prepared by direct surface modification of PDMS with fluorine gas ($50{\sim}2000\;{\mu}mol/mol$ in nitrogen). The formed fluorinated polymeric membranes were characterized by FT-IR spectroscopy, GC (Gas chromatography), atomic force microscopy, and scanning electron microscopy. Direct fluorination resulted in the change of permeability and selectivity of various gases (pure gases such as $CO_2$, $O_2$, $N_2$, $C_2H_4$, mixture of He, Ne, Kr, Xe) through PDMS membranes. Fluorination resulted in the maximum 50% increase of selectivity through PDMS membrane.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Fabrication of Silicon Nanowire Field-effect Transistors on Flexible Substrates using Direct Transfer Method (전사기법을 이용한 실리콘 나노선 트랜지스터의 제작)

  • Koo, Ja-Min;Chung, Eun-Ae;Lee, Myeong-Won;Kang, Jeong-Min;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.413-413
    • /
    • 2009
  • Silicon nanowires (Si NWs)-based top-gate field-effect transistors (FETs) are constructed by using Si NWs transferred onto flexible plastic substrates. Si NWs are obtained from the silicon wafers using photolithography and anisotropic etching process, and transferred onto flexible plastic substrates. To evaluate the electrical performance of the silicon nanowires, we examined the output and transfer characteristics of a top-gate field-effect transistor with a channel composed of a silicon nanowire selected from the nanowires on the plastic substrate. From these FETs, a field-effect mobility and transconductance are evaluated to be $47\;cm^2/Vs$ and 272 nS, respectively.

  • PDF

Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology (3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구)

  • Kim, Hyo Chan;Kim, Hyun Gil;Yang, Yong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

A study on the Thermopneumatic Actuator with Phase Change for Micro Pump (상변화를 이용한 열공압형 마이크로 펌프용 액츄에이터 성능에 관한 연구)

  • Park, S.;Hwang, J.Y.;Lee, S.;Kang, K.;Kang, H.;Jang, J.;Lee, H.;Kang, S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • Recently, Direct Methanol Fuel Cell (DMFC) for portable devices has been received much attention because DMFC has a possibility of higher energy density than electrical batteries and smaller size than other fuel cells. This paper presents the fabrication and test of a thermopneumatic microactuator with a phase change for DMFC. A microactuator consists of an inlet an outlet a chamber, a heater and a sensor of resistance temperature detector(RTD). The micoractuator is fabricated by the spin-coating process, the lithograph process, the deep RIE process and so on. The total size of microactuator is $20{\times}20{\times}0.53mm^3$. When the current is applied, the heater heats liquid in chamber. As a result the liquid vaporizes. The response of temperature in the chamber was measured using thermocouple The changed temperature is $3^{\circ}C$ for 5 sec at 0.032W.

  • PDF

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

A Design of a Diredt Digital Frequency Syntheszer with an Array Type CORDIC Pipeline (파이프라인형 CORDIC를 이용한 직접 디지털 주파수 합성기 설계)

  • 남현숙;김대용;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.36-43
    • /
    • 1999
  • A new design of a Direct Digital Frequency Synthesizer(DDFS) is presented, where a pipelined Coordinate Rotate Digital Computer(CORDIC) circuit is employed to calculate amplitude values of all the phase angles of sinusoidal waveforms produced. a near-optimal number of pipeline stages is determined based on an error analysis of calculated amplitude values in terms of the number of bits. The DDFS was implemented using a field programmable gate array, yielding a stable operating frequency of 11.75MHz. The measurement results show higher resolution, faster operating speed and simpler fabrication process, compared to ROM-based counterparts. The CORDIC-based DDFS yields 5 times higher resolution than conventional ROM-based versions.

  • PDF

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.