• Title/Summary/Keyword: Direct Fabrication

Search Result 483, Processing Time 0.026 seconds

One Step Fabrication of Organic Nanowires by using Direct Printing Method

  • Hwang, Jae.-K.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.158-158
    • /
    • 2011
  • A wide range of techniques for the direct-printing of functional materials have been developed for the fabrication of micro- and nanoscale structures and devices. Here we report a new direct patterning method, liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sized as small as tens of nanometers over large areas up to 4". LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. The LB-nTM method was applied to the preparation of organic nanowire FETs on flexible substrates.

  • PDF

Direct Writing Lithography Technique for Semiconductor Fabrication Process Using Proton Beam

  • Kim, Kwan Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.38-41
    • /
    • 2019
  • Proton beam writing is a direct writing lithography technique for semiconductor fabrication process. The advantage of this technique is that the proton beam does not scatter as they travel through the matter and therefore maintain a straight path as they penetrate into the resist. The experiment has been carried out at Accelerator Mass Spectrometry facility. The focused proton beam with the fluence of $100nC/mm^2$ was exposed on the PMMA coated silicon sample to make a pattern on a photo resist. The results show the potential of proton beam writing as an effective way to produce semiconductor fabrication process.

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Fabrication of 3D-Printed Circuit Device using Direct-Write Technology (Direct Write 기술을 이용한 3DCD의 제작)

  • Yun, Hae Young;Kim, Ho Chan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • Generally, electrical circuits are fabricated as Printed Circuit Boards (PCBs) and mounted on the casing of the product. Additionally, this requires many other parts and some labor for assembly. Recently, molding technology has increasingly been applied to embed simple circuits in plastic casing. The technology is called a Molded Interconnected Device (MID). By using this technology, PCB fabrication can be replaced by molding, and much of the corresponding assembly process for PCBs can be eliminated if the circuit is simple enough for molding. Furthermore, as the improvement of conductive materials and printing technologies of simple electric circuits can be printed directly on the casing part, this also reduces the complexity of the product design and production cost. Therefore, this paper introduces a new MID fabrication process using direct 3D printing technology. Additionally, it is applied to an automotive part of a cruise control switch. The methodology and design are shown.

Fabrication of Periodically Poled Lithium Niobate by Direct Laser-Writing and Its Poling Quality Evaluation

  • Dwivedi, Prashant Povel;Cha, Myoungsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.762-765
    • /
    • 2014
  • We fabricated a periodically poled lithium niobate (PPLN) by direct laser-writing of a quasi-phase-matching (QPM) structure in photolithographic process. Because we do not need to prepare a photomask by electron-beam writing, the "maskless" process shortens the fabrication time and significantly reduces the cost. We evaluated the poling quality of the direct laser-written PPLN by measuring the diffraction noise from the surface relief pattern of the fabricated QPM grating and comparing the results to those from a conventional PPLN made with a photomask. The quality of the PPLN fabricated by direct laser-writing was shown to be equivalent to that fabricated by the conventional method.

'AMADEUS' Software for ion Beam Nano Patterning and Characteristics of Nano Fabrication ('아마데우스' 이온빔 나노 패터닝 소프트웨어와 나노 가공 특성)

  • Kim H.B.;Hobler G.;Lugstein A.;Bertagonolli E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • The shrinking critical dimensions of modern technology place a heavy requirement on optimizing feature shapes at the micro- and nano scale. In addition, the use of ion beams in the nano-scale world is greatly increased by technology development. Especially, Focused ion Beam (FIB) has a great potential to fabricate the device in nano-scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the re-deposition effect due to the sputtered atoms. In recent years, many approaches and research results show that the re-deposition effect is the most outstanding effect to overcome or reduce in fabrication of micro and nano devices. A 2D string based simulation software AMADEUS-2D $(\underline{A}dvanced\;\underline{M}odeling\;and\;\underline{D}esign\;\underline{E}nvironment\;for\;\underline{S}putter\;Processes)$ for ion milling and FIB direct fabrication has been developed. It is capable of simulating ion beam sputtering and re-deposition. In this paper, the 2D FIB simulation is demonstrated and the characteristics of ion beam induced direct fabrication is analyzed according to various parameters. Several examples, single pixel, multi scan box region, and re-deposited sidewall formation, are given.

  • PDF

Fabrication of waveguide using UV Ar-ion laser direct writing (Laser Direct Writing 방법을 이용한 광도파로 제작)

  • Kang H. S.;Suh J.;Lee J. H.;Kim J. O.
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The laser direct writing method using a UV Argon-ion laser is studied for fabrication of waveguide. The laser direct writing system is constructed with a vision camera, a xy-stage, a motion controller and the delivery components of a laser beam. The UV Argon-ion laser has wavelength range of $333.6\~363.8$ nm. A photo-active UV curable polymer for a planar light-wave circuit(PLC) of single mode is used. This polymer is irradiated by Argon-ion laser and developed by a solvent after a post-baking. The optimum laser direct writing condition is obtained experimentally by changing various process parameters such as laser power, writing speed and focal length. The propagation and coupling loss of a optical waveguide was measured as 1dB/cm and 0.6dB/cm, respectively. Also, the minimum width of waveguide of $100{\mu}m$(ZPLW-207) is obtained. Finally, the waveguides of line, bend and branch type are successfully fabricated.

  • PDF

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Fixed prostheses fabricated by direct metal laser sintering system: case report (Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례)

  • Baek, Ju-Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.246-254
    • /
    • 2016
  • Nowadays, 3 dimentional (3D) printing, especially Direct Metal Laser Sintering (DMLS) system is used in dentistry. DMLS system has recently been introduced for fabrication metal framework for metal ceramic crowns to overcome the disadvantages of the casting method and computer aided design/computer aided manufacturing (CAD/CAM) milling system. DMLS system uses a high-temperature laser beam to selectively heat a substructure metal powder based on the CAD data with the framework design. A thin layer of the beamed area becomes fused, and the metal framework is completed by laminating these thin layers. Utilizing DMLS system to fabricate fixed prostheses is expected to achieve free-from shaping without mold and limitations from cutting tools, fabricate prostheses with complex geometry, prevent distortion and fabrication defects that inherent to conventional fabrication methods. The purpose of this case report is to demonstrate various fixed prostheses such as long span fixed prostheses, post to achieve satisfactory results in functional and esthetic aspects.

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.